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Abstract

Moscona & Sastry (2023,Quarterly Journal of Economics) – henceforth MS23 – find

that cropland values are significantly less damaged by extreme heat exposure (EHE)

when crops are more exposed to technological innovation. However, MS23’s ‘innovation

exposure’ variable does not measure innovation, instead proxying innovation using a

measure of crops’ national heat exposure. A re-examination of MS23’s replication data

– which permits a close but inexact reproduction of MS23’s published findings – shows

that this proxy moderates EHE impacts for reasons unrelated to innovation. The proxy

is practically identical to local EHE, so MS23’s models examining interaction effects be-

tween their proxy and local EHE effectively interact local EHE with itself. I document

extensive evidence that MS23’s findings on ‘innovation exposure’ are simply artefacts

of nonlinear impacts in local EHE, and uncover robustness issues for other key find-

ings. I then construct direct measures of innovation exposure from MS23’s crop variety

and patenting data. Replacing MS23’s proxy with these direct innovation measures

decreases MS23’s moderating effect estimates by at least 99.8% in standardized units;

none of these new estimates are statistically significantly different from zero. Similar

results arise from an instrumental variables strategy that instruments my direct in-

novation measures with MS23’s heat proxy. These results cast doubt on the general

capacity for market innovations to mitigate agricultural damage from climate change.
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1 Introduction

As global actors determine the best course of action to address the ongoing climate crisis,

there is still significant uncertainty about the level of investment that such actors should

dedicate towards mitigating climate change. Based on available mitigation pathways pro-

posed by the Intergovernmental Panel on Climate Change, global climate change mitigation

costs could range from 1-7% of global GDP each year (Fujimori et al. 2023). Considerable

time and effort has been invested in providing governments and businesses with estimates

on the optimal location of this investment spectrum on which to fall (see Auffhammer 2018).

This will depend not just on the overall costs of climate change, but also on the mitigatory

impacts of adaptations in practices and technology. A large literature has focused on the

mitigatory impacts of such adaptations (e.g., see Hornbeck 2012; Carter et al. 2018; Cui

2020; Aragón, Oteiza, & Rud 2021; Lai et al. 2022; Wang et al. 2024).

Moscona & Sastry (2023) – henceforth MS23 – offer a contribution to this literature.

Using data on crops and American croplands from 1950-2020, MS23 use panel data esti-

mates to offer evidence in support of two findings. First, agricultural markets endogenously

innovate to adapt to climate change: crops whose croplands are more exposed to extreme

heat see increased development of crop varieties and increases in climate-related patenting.

Second, MS23 find that this innovation mitigates agricultural damage induced by climate

change. MS23 construct a measure of ‘innovation exposure’ and estimate simple heteroge-

neous treatment effect (HTE) models that interact ‘innovation exposure’ with extreme heat

exposure (EHE). These HTE models yield negative coefficients for EHE, but positive co-

efficients for the interaction term between ‘innovation exposure’ and EHE, implying that

agricultural land (AL) in counties that are more exposed to innovation is less severely deval-

ued by EHE. In fact, MS23 find that for sufficiently high ‘innovation exposure’, the marginal

impact of EHE on AL values is not statistically significantly different from zero. Based on

these results, MS23 project that technological innovation offset roughly 20% of EHE-driven

AL devaluation from 1960-2020, and will offset 13% of EHE-driven AL devaluation by 2100.

This paper critically re-examines MS23’s findings due to a key flaw: MS23’s ‘innovation

exposure’ measure does not directly measure innovation. Using their first set of findings
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as justification, MS23 instead proxy county i’s ‘innovation exposure’ at time t using the

average EHE experienced by other counties at time t. MS23’s ‘innovation exposure’ proxy

is thus a measure of heat, rather than innovation. I demonstrate this in a re-analysis of

MS23’s replication data (Moscona & Sastry 2022). MS23’s replication repository, which fully

provides both raw and analysis data, permits a close but inexact (i.e., partial) computational

reproduction of their published findings. Using this data, I show that MS23’s proxy is nearly

indistinguishable from local EHE. This is intuitive, as both local and ‘leave-one-out’ EHE

reflect climate trends on the regional, national, and global levels.

This means that the positive coefficient on the interaction term in MS23’s HTE models

does not reflect mitigatory impacts of innovation on EHE-induced AL devaluation, instead

reflecting the fact that the negative marginal AL devaluation impacts of additional increases

in local EHE diminish if counties are already exposed to higher levels of extreme heat. This

is again intuitive. Though increases in EHE cause steep declines in agricultural productivity

near thresholds for optimal crop-growing temperatures, if a county’s heat has become so

extreme that no crops can grow anyways, then additional increases in EHE will have little

to no impact on AL values.

I show that this nonlinearity is the effect reflected by MS23’s interaction effect estimates

in two ways. First, I confirm that estimates from a specification that simply models AL

values as a second-order polynomial of local EHE yield qualitative conclusions that are

nearly identical to those yielded by MS23’s HTE models. Second, I show that one of MS23’s

critical robustness checks to rule out this possibility fails to replicate, and the model used for

this check is in any case incorrectly specified. After correcting the specification error, I show

that controlling for nonlinear effects in EHE renders most of MS23’s estimates of interest

not statistically significantly different from zero.

Estimating the mitigatory impacts of innovation does not require using a heat proxy, as

MS23 have data on direct measures of innovation. MS23 obtain their first set of findings using

direct data on crop variety development and climate-related patenting. I thus use MS23’s

replication data to construct direct measures of innovation exposure, specifically ‘variety

exposure’ and ‘patent exposure’.

I then re-estimate MS23’s HTE models, replacing MS23’s proxy with these direct mea-
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sures of innovation, and find no moderating effect estimate that is statistically significantly

different from zero. The effect sizes of the moderating effect estimates in my replications

are minuscule compared to MS23’s estimates. The standardized coefficients of my moder-

ating effect estimates are at least 99.8% less than the standardized coefficients of MS23’s

moderating effect estimates.

I additionally pursue an instrumental variables strategy which instruments my direct

innovation measures with MS23’s exogenous heat-based proxy. Intuitively, if MS23’s heat

proxy is such a strong predictor of innovation that it can serve as a direct measure of innova-

tion, then it should also be a suitable instrument for innovation. However, I find that MS23’s

proxy is a weak instrument for innovation, and despite clear exclusion restriction violations

that are likely favorable to MS23’s conclusions, these instrumental variables estimates are

at least 50% smaller in standardized units than MS23’s main estimates, with none being

statistically significantly different from zero.

These estimates remain negligible across many specifications and in the face of many

robustness checks. These findings further imply that MS23’s projections of historical and

future climate change damage mitigation from innovation are greatly overstated, as these

projections are entirely based on MS23’s HTE models. My replication thus ultimately casts

doubt on the capacity of market innovations to mitigate agricultural damage induced by

climate change.

Section 2 of this paper overviews MS23’s replication repository, the main published es-

timates of interest, and the reproducibility of such estimates. Section 3 then details MS23’s

proxy, as well as its inappropriateness as a measure of innovation for the purposes of MS23’s

estimations of interest. Thereafter, Section 4 introduces the two direct innovation measures

I construct from MS23’s replication data. Section 5 displays the results after re-estimating

MS23’s HTE models using my direct innovation measures, and Section 6 concludes.

2 Data, Published Findings, and Reproducibility

My analyses rely on MS23’s replication repository (Moscona & Sastry 2022). Appendix Table

A-I details the completeness of the repository, with specific regard to its completeness for
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producing Table III, Figure VI, and Appendix Tables A18 and A20. Raw data appears to be

fully available. However, there does not appear to be sufficient cleaning code to convert the

raw data into cleaned datasets. Specifically, no instructions are provided in the repository’s

ReadMe file for reproducing dataset county level data.dta. This file – the analysis data

for the replications of interest – is made available in the replication repository. However, the

repository’s analysis code contains minor errors.

Importantly, the repository lacks code for several results in the appendix. Two results of

importance to this analysis for which code is missing include Table A18 and Table A20. These

omissions lead to replication failures in the appendix; I defer discussion of this issue to Section

3.1.4. For all of the above reasons, I thus classify the results as partially computationally

reproducible, and discuss these coding errors later in this section.

2.1 Table III

The main replication of interest to this report concerns the mitigatory effects of technological

market innovations on EHE-induced AL devaluation. Let i index the county and t index the

decade. By Equation 18, MS23’s relevant estimates for the damage mitigation effects of

technological innovation in Table III arise from a simple HTE model of the form

log(AgrLandPricei,t) = δi + αs(i),t + βExtremeExposurei,t

+ γInnovationExposurei,t

+ ϕ
(
ExtremeExposurei,t × InnovationExposurei,t

)
+ ΓX ′

i,t + ϵi,t,

(E1)

where log(AgrLandPricei,t) represents logarithmic AL prices per cultivated land acre, δi are

county fixed effects, αs(i),t are state-by-year fixed effects, and X ′
i,t is a matrix of control

covariates. I defer discussion of ExtremeExposurei,t and InnovationExposurei,t to Section 3.

The model in Equation E1 is estimated using a county-decade panel dataset with t ∈

{1950, 1960, · · · 2010}. To provide an example of indexing, t = 1950 implies that the observa-

tion covers all years between 1950-1959, inclusive of endpoints. Table III is estimated using

two types of specifications. Models 1-5 are estimated using a ‘long-difference’ (LD) specifi-
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cation, which restricts time periods to t ∈ {1950, 2010}. Models 6-7 are estimated using a

panel specification with no such temporal restrictions.

[Table R–I about here]

ϕ is the parameter of interest for MS23’s findings concerning the mitigatory impact of

technological innovation on climate change damage. Table R–I shows β̂ and ϕ̂ estimates,

with standard errors (SEs) double-clustered at the county and state-decade levels.1 Panel

A directly copies the published results from MS23, and Panel B shows the results from my

reproduction, confirming that the replication repository permits a nearly exact reproduction

of Table III. The only differences between my reproductions and the published estimates in

Table III are the observation counts in Models 6 and 7; MS23 report 0.2% fewer observations

than I obtain in my computational reproductions.2

MS23 obtain significantly positive estimates for ϕ, and interpret this to mean that crop-

lands which are more exposed to innovation experience less devaluation when exposed to

extreme heat. To provide a sense of scale for these estimates, Panels C-D of Table R–I con-

vert the ϕ̂ and β̂ estimates from Table III into two standardized effect size measures, in line

with Fitzgerald (2024). Panel C converts the estimates into partial correlation coefficients r,

and subsequently into SE(r), using the following representation (van Aert & Goos 2023):

r =
t√

t2 + df
SE(r) =

1− r2√
df

, (E2)

where t is the usual t-statistic and df is the model’s residual degrees of freedom. The partial

correlation coefficients of ϕ̂ in my reproduction of Table III range from 0.156 to 0.505. Partial

correlations of this magnitude range from small to large amongst published effect sizes in

economics (Doucouliagos 2011).

1I focus on SEs double-clustered at the county and state-decade levels rather than SEs clustered solely at
the state-decade level because double clustering appears to produce smaller SEs for most of MS23’s models,
and is thus more lenient for replication purposes.

2When approached with this matter, the authors contended that the difference in observation counts is
attributable to a package update to reghdfe, with my newer version handling collinear observations in a
different manner than the older version used by MS23. However, this is not currently possible to verify, as
MS23 do not report package versions in their documentation. I reproduce these results using reghdfe version
6.12.5, updated as of 27 December 2023.
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Panel D converts the estimates into standardized coefficients σ. Let D be a given in-

dependent variable (either EHE or its interaction with innovation exposure) and Y be the

dependent variable (logarithmic AL value). Because all D and Y are continuous, I compute

σ and SE(σ) using estimate τ̂ ∈
{
ϕ̂, β̂

}
via the formulas

σ =
τ̂σD

σY
SE(σ) =

SE (τ̂)σD

σY

, (E3)

where σD and σY respectively represent the within-sample standard deviations of D and Y .3

σ estimates for ϕ̂ range from 0.274 to 1.028 in Table R–I, ranging from small to large in

standardized effect size terms (see Cohen 1988).

2.2 Figure VI

[Figure R-I about here]

MS23’s Figure VI visualizes the marginal impact of county-level EHE on AL values across

selected quantiles of InnovationExposurei,t. I reproduce Figure VI, along with two corrections

thereof, in Figure R-I. The left graph in Figure R-I reproduces Figure VI based on MS23’s

replication code, though like the middle and right graphs, the y-axis of this graph is given a

custom scale to ensure uniform y-axis scaling across all three graphs.

I detect a very minor error in MS23’s construction of Figure VI: the values used to con-

struct the quantiles are incorrectly hard-coded into the do-file. Specifically, in county level.do,

MS23 extrapolate marginal effects using Stata’s lincom command, multiplying coefficient es-

timates by hard-coded numbers intended to represent the 10th, 25th, 50th, 75th, and 90th

percentiles of InnovationExposurei,t. These hard-coded numbers are incorrect, though they

are extremely close to the quantiles that I estimate.

The middle and right graphs in Figure R-I present extrapolated treatment effects after

quantiles are corrected in one of two ways. The middle graph arises from corrected quantiles

of InnovationExposurei,t based on the full data sample, whereas the right graph arises from

corrected quantiles of InnovationExposurei,t based only on observations from 1950 and 2010

3Computationally, this is done by re-running the regressions of interest after dividing Y by σY and each
D of interest by its respective σD.
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(i.e., those in the LD specification). This correction is quite minor; the same conclusions arise

for all three graphs, and the published version looks very similar to the right hand graph.

All three graphs in Figure R-I show that the marginal impact of EHE on logarithmic

AL values is significantly negative for most of the distribution of InnovationExposurei,t.

However, this negative effect diminishes as InnovationExposurei,t increases. For sufficiently

high quantiles of InnovationExposurei,t, the impact of EHE on logarithmic AL values is not

statistically significantly different from zero.

3 The Innovation Exposure Proxy

Let k index a given crop. Per Equation 8, MS23 measure EHE as ExtremeExposurei,k,t,

which is the number of growing degree days in county i above crop k’s maximum optimal

temperature in decade t. By Equation 16, MS23 measure EHE at the county level as a

weighted average of ExtremeExposurei,k,t across all crops planted in county i, where the

heat exposure for crop k is weighted by the proportion of land area in county i dedicated to

planting crop k at baseline:

ExtremeExposurei,t =
∑
k

[
ExtremeExposurei,k,t × AreaPrei,k∑

k′ Area
Pre
i,k′

]
. (E4)

By Equation 17, MS23 measure ‘innovation exposure’ as an area-weighted average across

counties in a given decade, in an analagous fashion to ExtremeExposurei,t. However, rather

than an area-weighted average of ExtremeExposurei,k,t, MS23 specify InnovationExposurei,t

as an area-weighted average of other counties’ EHE:

InnovationExposurei,t =
∑
k

[
AreaPrei,k∑
k′ Area

Pre
i,k′

×
∑
j ̸=i

[
AreaPrej,k∑
j ̸=i Area

Pre
j,k

× ExtremeExposurej,k,t

]]
.

(E5)

Though MS23 are transparent about the calculation of InnovationExposurei,t in the pa-

per, this variable does not measure innovation; it measures heat. As MS23 write (pgs. 678-
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679): “[We] calculate each county’s innovation exposure as the average across all crops’ na-

tional extreme-heat exposure... weighted by planted areas... We make only the small change

of calculating this variable leaving out the county i to avoid any mechanical correlation.” In

fact, MS23 primarily refer to this variable as ‘leave-one-out’ (LOO) EHE in their replication

repository. I adopt this terminology to refer to MS23’s innovation exposure proxy for the

remainder of this paper.

[Figure R-II about here]

This context completely changes the interpretation of ϕ in Equation E1, which will be

positive for reasons that have nothing to do with the damage mitigation impacts of directed

innovation; specifically, ϕ̂ most likely reflects a nonlinear relationship between temperature

and crop yields. Figure R-II displays the relationship that ϕ̂ is most likely capturing in

Table III. In particular, Figure R-II presents a binscatter regression plot between county-

level EHE and logarithmic AL values. Each bar represents a quantile bin of the distribution

of ExtremeExposurei,t, so x-axis regions with more (fewer) bars are more dense (sparse)

in ExtremeExposurei,t. The figure makes clearly visible that although local EHE decreases

AL value across most of the distribution of ExtremeExposurei,t, this relationship diminishes

on average as local EHE increases, and functionally flatlines for sufficiently high values of

ExtremeExposurei,t.

Because national heat shocks naturally drive local heat shocks, LOO EHE very closely

tracks county-level EHE (see Section 3.1.2), and thus the interaction term in Equation E1 is

effectively interacting ExtremeExposurei,t with itself. As a result, Equation E1 functionally

estimates logarithmic AL values as a function of a second-order polynomial in local EHE. ϕ̂’s

sign in MS23’s HTE specifications is thus effectively the sign of the average second derivative

over the function displayed in Figure R-II. Therefore, MS23’s positive ϕ̂ estimates largely

reflect the deceleration of negative marginal EHE impacts as ExtremeExposurei,t increases

towards the upper tail of its distribution.

Such nonlinear dynamics between heat and AL value have been established in prior

literature, including literature cited by MS23. For example, Schlenker & Roberts (2008;

2009) find that near maximum thresholds for optimal crop-growing temperatures, increases
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in temperature lead to steep declines in crop yields. However, when temperatures increase

to sufficiently extreme highs, croplands can lose nearly all capacity for crop growth, so the

marginal damages of additional temperature increases to crop yields diminish or even flatline.

In fact, the nonlinear relationship between county-level EHE and AL values displayed in

Figure R-II is fairly similar to the nonlinear relationships between temperatures and crop

yields that Schlenker & Roberts (2008; 2009) find for corn, soybeans, and cotton.4

This context also explains the findings in Figure VI. As EHE increases, the marginal

damages induced by additional local extreme heat shocks diminish, and for sufficiently high

quantiles of EHE, the marginal harms of additional extreme heat shocks disappear. This

is intuitive: to provide an extreme example, if a county’s temperatures are so hot that the

county’s croplands are completely unsuitable for agriculture, then additional local increases

in temperature will have virtually zero impact on such croplands’ AL value. However, this

intuitive moderating relationship has nothing to do with innovation.

I show that MS23’s results are an artefact of effectively fitting a second-order polyno-

mial in EHE by explicitly fitting a second-order polynomial in EHE. Specifically, I pro-

duce specifications akin to Equation E1, but replacing the interaction specification between

ExtremeExposurei,t and LOO EHE with a second-order polynomial in ExtremeExposurei,t:

log(AgrLandPrice)i,t = δi + αs(i),t + θ1ExtremeExposurei,t

+ θ2ExtremeExposure2i,t + ΓX ′
i,t + ϵi,t.

(E6)

In this specification, θ1 and θ2 are respectively akin to β and ϕ in Equation E1.

[Table R–II about here]

Table R–II displays the results from this second-order polynomial specification, which

shows that fitting a second-order polynomial in county-level EHE yields results that are,

4One potential objection to this comparison is that Schlenker & Roberts (2008; 2009) are examining
nonlinear relationships in raw temperature, whereas Figure R-II is displaying nonparametric relationships in
EHE (which is locally indexed based on agronomically-verified killing temperatures of the crops growing in
each county at baseline). However, these two findings are likely capturing the same underlying nonlinearity,
as both EHE and local temperatures exhibit strong positive correlations, which is naturally intuitive given
that they are both measures of heat. Appendix Table A-II shows panel data regressions confirming that each
1000 additional crop-weighted growing degree days of EHE is associated with a 1.075-1.166 degree Celsius
increase in average local temperatures. The t-statistics for these regression coefficients range from 28-58.

10



qualitatively, nearly identical to MS23’s results in Table III. Though Panels B-C in Table

R–II show that the effect sizes of these estimates are smaller than those from Table III

(see Panels C-D in Table R–I), all seven models in Table R–II yield θ̂1 and θ̂2 estimates

that respectively hold the same signs as the β̂ and ϕ̂ estimates in Table III. These θ̂1 and

θ̂2 estimates additionally yield the same statistical significance conclusions as the β̂ and ϕ̂

estimates in Table III for six of seven models.

3.1 Justifications for the Proxy

MS23 justify their innovation exposure proxy on four grounds. First, MS23 contend that EHE

is a strong predictor of climate-adaptive innovation. Second, MS23 claim that computing

their ‘innovation exposure’ proxy in LOO fashion rids the proxy of correlations with local

temperature. Third, MS23 provide checks showing the robustness of their key estimates when

proxying ‘innovation exposure’ with a ‘leave-state-out’ EHE measure. Fourth and finally,

MS23 claim that their results are robust to controlling for higher-order polynomials in EHE.

I address each of these arguments in turn throughout the remainder of this section. In

Section 3.1.1, I note that an innovation proxy is unnecessary given that MS23 already possess

direct measures of innovation, and establish several reasons to doubt that the relationship

between EHE and innovation is either causal or strong enough to justify using heat as a

direct measure of innovation. In Section 3.1.2, I show that computing MS23’s proxy in LOO

fashion does not purge the proxy of correlations with local EHE; their proxy maps both one-

to-one linearly, and unit elastically, with local EHE. In Section 3.1.3, I show similar results

for MS23’s leave-state-out proxy. Finally, in Section 3.1.4, I show that MS23’s robustness

checks controlling for higher-order polynomials in local EHE fail to replicate, and that the

published check misleads readers on the robustness of MS23’s mitigatory impact estimates

to controlling for nonlinear functions of local EHE. I also find that their robustness check is

misspecified. After correcting the misspecification, controlling for nonlinear functions of EHE

erases the statistical significance of the majority of MS23’s mitigatory impact estimates.
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3.1.1 Heat as a Predictor of Climate-Adaptive Innovation

MS23 note that their estimates in Section IV provide evidence that EHE strongly predicts

innovation, showing that crops whose croplands are more exposed to extreme heat are also

more exposed to increased innovation in crop varieties and climate-related patenting.5 How-

ever, this means that a proxy is unnecessary, as LD and/or panel data is available on these

variables. The estimation in Equation E1 can thus be conducted with direct measures of

innovation exposure. I revisit this point in further detail in Sections 4 and 5.

Even setting aside the issue of whether a proxy is necessary, and even beyond the overar-

ching issues outlined earlier in Section 3, there are two additional reasons to question whether

MS23’s results in Section IV justify using LOO EHE as a direct measure of ‘innovation expo-

sure’. First, not all crop innovation is related to climate adaptation. For the purposes of this

replication, this is not a particularly serious issue for patents, as MS23 already distinguish

between climate-related and climate-unrelated patents. However, crop varieties are not sim-

ilarly separated in MS23’s data, and not all crop varieties are developed for the purpose of

adapting to climate change. More varieties may be developed for crops grown in the regions

impacted most by climate change for reasons unrelated to climate adaptation. This prospect

would imply that the correlations between EHE and variety/patent development found in

MS23’s Section IV do not provide evidence of markets developing new crop varieties to adapt

to climate change, instead implying that this innovation emerged for unrelated reasons.

It is actually quite plausible that more varieties are developed for crops grown in counties

exposed to more extreme heat for reasons unrelated to climate adaptation, namely because

crops grown in these locations are more financially lucrative. MS23’s Appendix Figure A5(a)

shows local EHE by county from the 1950s through the 2010s. Most of the counties that

are most heavily impacted by EHE are located on the Pacific and Atlantic coastlines, with

additional EHE concentration in several western inland states such as Idaho and Colorado.

Appendix Figure A-I shows each county’s average value of sold crops per acre of harvested

cropland, based on data from the U.S. Department of Agriculture’s 2017 Census of Agricul-

5From MS23, pg. 679: “This measure will allow us to investigate the role of endogenous technological
progress because, as documented in the first part of the article, it is a strong predictor of innovation and
hence the existence of new, climate-induced technology that can be used for production in county i.”
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ture (the most recent census fielded before the end of MS23’s time horizon). Cross-referencing

MS23’s Appendix Figure A5(a) with my Appendix Figure A-I shows that the counties where

crops are most lucrative align relatively closely with the counties that have experienced the

largest EHE shocks.

This is an economically intuitive consequence of baseline geographical features. In the

U.S., coastline states are well-known for exhibiting higher economic productivity, economic

activity, and population density than inland states, and thus the opportunity cost of casting

land for crop growth is higher on the coasts than it is further inland. Because of this, a

crop must be particularly lucrative in order for land in a coastal county to be set aside for

growing that crop. It is thus sensible that the crops grown in these coastal counties receive

more investment into variety development because these crops are more valuable per unit

of land, and thus marginal improvements in yield provide more promising financial results

per acre of land for these crops than for crops grown in inland states. It is plausible that

this is a primary factor explaining why crops grown in coastal counties see more (successful)

investment into innovation, and that the higher EHE in the counties that grow these crops

is a sheer coincidence. This casts doubt on the appropriateness of LOO EHE as a proxy for

climate-adaptive innovation exposure.

Ruling out the prospect that MS23’s key estimates of interest are driven by innovations

unrelated to climate adaptation requires an instrumental variables strategy whereby direct

innovation measures are instrumented by exogenous (LOO) EHE shocks, and I explicitly

pursue this strategy in Section 5.2. However, the results of this instrumental variables analysis

are generally unfavorable for MS23’s conclusions. First-stage F -statistics show that LOO

EHE is a weak instrument for the direct innovation measures that I construct in Section

4. Additionally, the instrumental variables estimates themselves yield mitigatory impact

estimates that decrease in size by more than half compared to those same estimates in

MS23’s Table III (see Section 5.2 for more details).

The second further issue with interpreting the results from Section IV in MS23 as ev-

idence that EHE induces climate-adaptive innovation is that innovation in MS23’s data is

concentrated in a handful of crops. By the end of the 2010s, 37.8% of the crop varieties in

MS23’s data belonged to the top five crops with the most crop varieties, and 50% of the
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climate-related patents in MS23’s data were related to the top five crops with the most

climate-related patents. Many of these crops hold particularly large market shares in the

American crop market.6 If most of the variation in innovation arises from a handful of

the most-innovated crops, then MS23’s results in Section IV are effectively just identifying

whether the counties growing the most-innovated large-market crops happen to be exposed

to more extreme heat. This would pose a challenge to interpreting the results in Section

IV as causal evidence that EHE induces endogenous climate-adaptive innovation, as these

crops may be more innovated upon not because they are more exposed to extreme heat,

but simply because these crops have larger markets, and therefore marginal improvements

in yield would promise larger financial returns.

MS23’s finding that EHE induces growth in climate-related patents is entirely dependent

on this handful of top crops. Appendix Table A-III replicates MS23’s Table II, excluding

the top five crops with the most climate-related patents by the end of the 2010s. Removing

these top five crops decreases the estimated relationship between EHE and climate-related

patenting by over 53%, and renders the relationship not statistically significantly different

from zero.

Additionally, MS23’s findings that EHE induces climate-adaptive crop variety develop-

ment are considerably driven by this handful of top crops. Appendix Table A-IV replicates

MS23’s Table I, removing the top five crops with the most crop varieties by the end of the

2010s. Though all of the estimates of EHE’s impact on crop variety development remain

statistically significantly different from zero, they attenuate considerably. These estimates

are smaller than their respective estimates in Table I by 11.9-35.3%.

The questionable causal relationship between EHE and climate-adaptive innovation poses

serious challenges to the appropriateness of LOO EHE as a proxy for ‘innovation exposure’.

MS23 rely on the strength and validity of this relationship to argue that LOO EHE can be

used not just as an instrument for innovation exposure, but as a direct measure of innovation.

The fact that the EHE-innovation relationship is neither particularly strong nor certainly

causal creates serious doubts for the validity of such a proxy.

6Corn and soybeans are on both ‘top five’ lists. The remaining crops that are ‘top five’ in varieties include
lettuce/romaine, tomatoes, and wheat, whereas the remaining crops that are ‘top five’ in patents include
alfalfa (and varieties thereof), barley, and tobacco.
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3.1.2 Leave-One-Out Computation

Though MS23 posit that computing national EHE in LOO fashion “[purges] the measure of

national crop-level damage driven by the county in question” (pg. 679), LOO computation

does virtually nothing to rid MS23’s proxy of correlations with county-level extreme heat

shocks. This is an intuitive consequence of the fact that both county-level and LOO EHE

are driven by regional and national extreme heat increases induced by global climate change.

EHE is thus exogenously ‘assigned’ at a much higher level than the county, and EHE in a

given county’s neighbors – even distant ones – are therefore often also reflective of EHE in

that county.

[Figure R-III about here]

There is strong evidence that MS23’s LOO EHE measure closely proxies county-level

EHE. The left-hand graph in Figure R-III plots the results of a binscatter regression between

ExtremeExposurei,t and LOO EHE, showing that the two measures positively move together

in lockstep for the vast majority of their distributions. The slope of this relationship maps

very closely onto a 45-degree line, which would indicate a perfect one-to-one unit relationship

between county-level and LOO EHEs.

Models 1 and 2 in Appendix Table A-V provide additional evidence showing that the

two EHE measures are effectively identical on average. A simple random effects panel data

regression of county-level EHE on LOO EHE yields a coefficient of 0.994 (SE = 0.018),

implying that on average, the two measures linearly map onto one another in nearly one-

to-one fashion. Marginal effect post-estimation yields a constant elasticity estimate of 1.002

(SE = 0.023), implying that on average, the two measures are virtually unit elastic. LOO

computation does not purge MS23’s proxy of correlations with county-level EHE; LOO EHE

and county-level EHE are practically identical.

3.1.3 An Alternative Leave-State-Out Proxy

MS23 attempt to address concerns about EHE assignment spillovers by running an alterna-

tive specification that computes national EHE in leave-state-out fashion rather than LOO
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fashion.7 Intuitively, for county i in state s, leave-state-out EHE is an area-weighted average

of ExtremeExposurei,k,t for all i /∈ s. The logic behind this check is that EHE is almost cer-

tainly exogenously assigned at a higher level than the county, but is less plausibly assigned at

a higher level than the state. Therefore, if results arising from the leave-state-out proxy look

similar to those arising from the LOO proxy, MS23 reason that this provides reassurance

that their results are not driven by EHE spillovers from nearby geographic divisions.

Though MS23 contend that their results in Appendix Table A20 show that their estimates

of the mitigatory impact of ‘innovation exposure’ remain similar to those in Table III when

using the leave-state-out proxy (pgs. 683-684), this robustness check attenuates all estimates,

and attenuates some to a considerable degree. The moderating effect estimates of interest in

the LD models of Appendix Table A20 are 20.2-22.9% smaller than these same estimates in

Table III. In the panel data models, the moderating effect estimates of interest in Table A20

are 5.5-9% smaller than those estimates in Table III.

However, the biggest problem with the leave-state-out proxy is that leave-state-out com-

putation still does very little to rid the proxy of strong correlations with local EHE. The

right-hand graph in Figure R-III shows a binscatter regression plot of the nonparametric

relationship between leave-state out and local EHEs. The right-hand graph looks strikingly

similar to the left-hand graph, which plots the same nonparametric relationship between

LOO and local EHEs. Both relationships map closely to the perfect unit relationship of a

45-degree line for the vast majority of their distributions. Columns 3-4 of Appendix Table

A-V provide confirmatory results from panel data regression models. The coefficient from a

simple random effects regression of local EHE on leave-state-out EHE is 0.92 (SE = 0.019),

which is close to a one-to-one unit relationship. The elasticity between local EHE and leave-

state-out EHE is 0.886 (SE = 0.018), which is close to a unit elastic relationship. The

relationship between local and leave-state-out EHEs is further away from linear one-to-one

and unit-elastic than the relationship between local and LOO EHEs, which likely explains

the attenuation of the mitigatory impact estimates in Appendix Table A20. However, the

7MS23 provide code for computing this measure in make county shocks.py, and store it by county and
decade in dataset county shocks.csv under variables gdd lso 1950, gdd lso 1960, and so forth. I write a
simple R script that maps these leave-state-out EHE values to their respective county-decade observations
in county data.dta.
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differences in the relationships with local EHE between the LOO and leave-state-out EHEs

are minor (see Section 3.1.2). Like LOO EHE, leave-state-out EHE is still strongly positively

correlated with local EHE.

Leave-state-out computation of the proxy fails to purge the proxy of strong correlations

with local EHE for the same reason that LOO computation fails to purge these correlations:

EHE is assigned at a higher level than either the county or the state. Appendix Figure A-II

shows average mean temperature deviations from historical climatic averages by U.S. county

in June 2018. June sits in the middle of the April-October growing season targeted by MS23,

and 2018 sits near the end of the time horizon in MS23’s analysis. The figure shows that

large contiguous swaths of the U.S. – including much of the Midwest and Southwest – expe-

rienced mean temperature anomalies within the same 3 degree Fahrenheit (≈ 1.667 degree

Celsius) band of one another. Most of the remainder of the U.S. experienced temperature

anomalies within a ±3 degree Fahrenheit band of zero. Removing one state from the proxy’s

computation does not overcome EHE spillovers arising from these broader climatic patterns,

which I show empirically in Figure R-III and Appendix Table A-V.

3.1.4 Robustness of the Main Specifications

MS23’s primary empirical argument that their proxy “is not capturing higher-order terms of

county-level extreme-temperature exposure” is supported by Appendix Table A18, in which

they claim to achieve “very similar” mitigatory impact estimates after controlling for higher-

order polynomials in local EHE (pg. 683). MS23 do not provide replication code for Appendix

Table A18, but the table appears identical to Table III with the exception that all models

in Appendix Table A18 control for ExtremeExposure2i,t. The models in Appendix Table A18

are thus akin to Equation E1, taking the form

log(AgrLandPricei,t) = δi + αs(i),t + β1ExtremeExposurei,t

+ β2ExtremeExposure2i,t + γInnovationExposurei,t

+ ϕ
(
ExtremeExposurei,t × InnovationExposurei,t

)
+ ΓX ′

i,t + ϵi,t,

(E7)
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where ϕ remains the estimate of interest.

However, Appendix Table A18 fails to replicate, and this replication failure is important

for MS23’s claims. Appendix Table A-VI juxtaposes the published version of Appendix Table

A18 against my best attempt to replicate the table. The published version of Appendix Table

A18 implies that after controlling for ExtremeExposure2i,t, MS23’s estimates of the mitigatory

impact of ‘innovation exposure’ increase by 1.2-4.7% compared to Table III. Given that the

initial estimates of interest to this check are positive, this published robustness check would

suggest that if anything, controlling for higher-order polynomials in EHE strengthens the

evidence for the mitigatory impact of ‘innovation exposure’. In contrast, my reproduction

of Appendix Table A18 reveals that controlling for ExtremeExposure2i,t actually decreases

MS23’s mitigatory impact estimates by 4.7-24.7%. Controlling for higher-order polynomials

in EHE thus attenuates the estimates of interest; MS23’s published estimates in Appendix

Table A18 are in this sense misleading.

Additionally, the model used to demonstrate the robustness of MS23’s mitigatory impact

estimates is incorrectly specified. The HTE model in Equation E1 produces moderating

effect estimates by interacting ExtremeExposurei,t with LOO EHE. Equation E7, which is

the model used to produce the estimates in Appendix Table A18, augments Equation E1

by adding ExtremeExposure2i,t as a control variable, but then fails to specify the additional

interaction between ExtremeExposure2i,t and LOO EHE that would be ordinarily expected

in a model of this form. The HTE model in Equation E7 is thus incorrectly saturated, in a

manner akin to running a triple-differences model without its triple interaction (see Olden

& Møen 2022). Because of this misspecification, the coefficient on the interaction term in

Equation E7 loses its intuitive econometric interpretation.

The average moderating effect of LOO EHE on EHE-induced AL devaluation can be ap-

propriately obtained by additionally specifying the interaction between ExtremeExposure2i,t

and LOO EHE. For compactness, let ExtremeExposurei,t and InnovationExposurei,t be writ-
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ten as EHEi,t and LOOi,t respectively. Consider a model of the form

log(AgrLandPricei,t) = δi + αs(i),t + β1EHEi,t + β2EHE
2
i,t + γLOOi,t

+ ϕ1 (EHEi,t × LOOi,t) + ϕ2

(
EHE2

i,t × LOOi,t

)
+ ΓX ′

i,t + ϵi,t.

(E8)

Under a standard conditional mean independence assumption (which MS23 also implicitly

impose), the average moderating effect of LOO EHE on EHE-driven AL devaluation can be

isolated from Equation E8 as follows:

∂2log(AgrLandPricei,t)

∂EHEi,t∂LOOi,t

= ϕ1 + 2ϕ2EHEi,t

E
[
∂2log(AgrLandPricei,t)

∂EHEi,t∂LOOi,t

]
= ϕ̂1 + 2ϕ̂2E [EHEi,t] . (E9)

E [EHEi,t] can be simply computed as a within-sample mean of EHEi,t. Note that MS23’s

moderating effect estimates in Equation E7 arise exclusively from ϕ, which is akin to ϕ1 in

Equation E8. Thus given the average moderating effect identified in Equation E9, MS23’s

estimates in Appendix Table A18 do not fully identify the moderating effect on EHE-driven

AL devaluation.

[Table R–III about here]

Running the correctly-specified model in Equation E8 and obtaining average moderating

effects via Equation E9 shows that MS23’s estimates of the moderating effect of LOO EHE

on EHE-driven AL devaluation are not robust to controlling for nonlinear functions of local

EHE. Table R–III displays average moderating effect estimates from Equation E9, computed

from specifications of the form in Equation E8. All five of the average moderating effect

estimates for the LD models in Table R–III are smaller than their respective estimates in

Table III, decreasing by 11.5-55.2%. Four of these five LD estimates are not statistically

significantly different from zero. The only estimates that ‘benefit’ from this control scheme

are the panel data estimates, which increase by 64.5-72.7%. These results ultimately show

that MS23’s estimates of the mitigatory impact of ‘innovation exposure’ are not robust to
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controlling for nonlinear functions of EHE. This is evidence that MS23’s mitigatory impact

estimates are heavily driven by a nonlinear relationship between EHE and AL value.

4 Direct Measures of Innovation Exposure

As discussed in Section 3.1, it is not necessary to proxy innovation exposure with LOO

EHE, as MS23 possess data on multiple direct measures of innovation. Section IV of MS23

shows correlations between county-level EHE and two forms of innovation. First, Table I and

Figure IV show that crops whose croplands are exposed to more extreme heat see increases

in crop variety development. Repository dataset crop level data.dta stores crop-decade

panel data on NCropsk,t, the number of crop varieties listed on the U.S. Department of

Agriculture’s Variety Name List for crop k in decade t. Second, Table II and Figure V

show that crops whose croplands are exposed to more extreme heat see increases in asso-

ciated patents that are related to climate change. crop level data.dta stores crop-level

data on PatentsPrek (the number of climate-related patents associated with crop k prior to

1960, stored as tot 1960 cc USA) and PatentsPostk (the number of climate-related patents

associated with crop k between 1960-2020, stored as tot 1960 2020 USA cc).8

I use these crop-level innovation variables to construct direct measures of innovation

exposure in the county-decade panel data. First, I compute ‘variety exposure’:

VarietyExposurei,t =
∑
k

[
NCropsk,t × AreaPrei,k∑

k′ Area
Pre
i,k′

]
. (E10)

This measure is constructed similarly to ExtremeExposurei,t, as it is an area-weighted average

of crop variety (rather than EHE). The same is true of my second direct innovation measure,

8Though I contacted the authors to request crop-decade panel data on patent development, the authors
informed me that crop-decade panel data was never stored, and patent data was only scraped for use in LD
specifications.
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which I term ‘patent exposure’:

PatentExposurei,t =


∑

k

[
PatentsPrek×AreaPre

i,k∑
k′ AreaPre

i,k′

]
if t = 1950∑

k

[
PatentsPostk×AreaPre

i,k∑
k′ AreaPre

i,k′

]
if t = 2010

. (E11)

Patent exposure is only defined for t ∈ {1950, 2010}, as data is only available on patenting

in these two time periods. It is thus only possible to replicate LD estimates of Equation E1

using patent exposure.

5 Results

5.1 Reduced-Form Estimates

[Table R–IV about here]

Table R–IV shows the results of models estimating Equation E1, where LOO EHE is re-

placed with VarietyExposurei,t. Replacing MS23’s proxy with a direct measure of innovation

exposure virtually eliminates the moderating effects found in Table R–I. Across all models

in Table R–IV, no moderating effect estimate is statistically significantly different from zero.

The moderating effect estimates in Table R–IV are microscopic compared to those esti-

mates in Table R–I. This is not due to a difference in units; though the partial correlation

coefficients of the moderating effect estimates in Table R–I, Panel C range from 0.091r to

0.425r, those coefficients in Table R–IV, Panel B range from −0.137r to 0.034r. Partial

correlation coefficients do not lend well to linear comparisons; r = 0.015 is not one tenth

of r = 0.15 in the same way that r = 1.5 is not ten times r = 0.15. However, standard-

ized coefficients do permit such linear comparisons; the standardized coefficient estimates of

moderating effects in Table R–IV, Panel C are at least 99.8% less, and at least 93% smaller,

than those moderating effect estimates in Table R–I, Panel D.

[Table R–V about here]

The same reduction in moderating effect estimates occurs when LOO EHE is replaced

with PatentExposurei,t rather than VarietyExposurei,t. Table R–V shows LD specifications
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estimating Equation E1 with PatentExposurei,t replacing LOO EHE. Again, no moderat-

ing effect estimates from this specification are statistically significantly different from zero.

Partial correlation coefficients on the moderating effect estimates in this table range from

−0.136r to 0.01r. The standardized coefficient estimates of moderating effects in Table R–V,

Panel C are at least 99.8% less, and at least 98.5% smaller, than those moderating effect

estimates in Table R–I, Panel D. Across both direct measures of innovation exposure, there

is no statistically significant evidence that innovation moderates EHE impacts on AL values.

[Figure R-IV about here]

Figure R-IV plots HTEs of county-level EHE on AL values for selected quantiles of differ-

ent moderating variables. This figure is computed differently than Figure VI; while Figure VI

is calculated using lincom, I directly estimate the marginal effects of EHE over each quan-

tile of the moderating variables using the margins, dydx() at() post-estimation suite in

Stata.9 The left graph in Figure R-IV shows that this change in procedure makes no func-

tional difference to the HTE estimates for LOO extreme heat exposure, as the attenuation

of HTEs toward zero for higher values of LOO extreme heat exposure practically identically

matches that of the corrected right-hand graph in Figure R-I. However, the middle and right

graphs in Figure R-IV, respectively constructed from the Model 1 estimates in Tables R–IV

and R–V, show that the impact of EHE on AL values is virtually flat in variety exposure

and patent exposure. If anything, the marginal AL devaluation impacts of EHE appear to

grow more negative for higher quantiles of variety exposure and patent exposure, reflecting

the negative interaction effect estimates from Model I in Tables R–IV and R–V.

5.2 Instrumental Variables Estimates

To show that the results in Section 5.1 are not driven by the endogenous determination of my

direct innovation measures, I estimate IV models of Equation E1 that instrument innovation

9One reason I make this change is that HTE estimates from lincom exhibit unintuitive behavior. In
particular, the marginal effect of EHE on AL value appears to slightly increase (i.e., slightly diminish) for
higher values of variety exposure and patent exposure. This is despite the fact that the interaction effect
estimates from the relevant models (particularly those from Model I in Tables R–IV and R–V) are (very
slightly) negative, implying that higher values of EHE should induce (slight) decreases in the estimated
marginal effect of EHE on AL values. The evolution of EHE HTEs over the distributions of variety exposure
and patent exposure visualized in Figure R-IV correctly reflect this property.
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exposure and its interaction with ExtremeExposurei,t using a second-order polynomial of

LOO EHE. I repeat this specification twice, each time with either variety or patent exposure

as the measure of innovation exposure. This IV strategy reflects the intuition that if LOO

EHE is a good exogenous proxy for innovation exposure, then it should also be a good

instrument for innovation exposure.

Considering this IV framework provides additional intuition for why LOO EHE is an

inappropriate proxy for innovation exposure, as a clear exclusion restriction violation arises.

LOO EHE is naturally expected to impact AL values through mechanisms other than in-

novation exposure. Specifically, as established in Section 3.1.2, LOO EHE will impact AL

values through county-level EHE because LOO EHE reflects national and global climate

trends that directly impact county-level EHE. Prior literature also establishes that using

heat as an instrument is known to induce many potential exclusion restriction violations

beyond this relatively simple case (see Mellon 2024).

Critically, these exclusion restriction violations should be favorable for MS23’s results.

As shown in Table R–II, when local EHE is interacted with itself, the resulting relationship

with AL value is positive. Therefore, given the empirical evidence in Sections 3.1.2 and

3.1.3 that LOO EHE closely tracks local EHE, after instrumenting InnovationExposurei,t ×

ExtremeExposurei,t with LOO EHE, the resulting coefficient is most likely upward-biased.

Appendix Tables A-VII and A-VIII respectively replicate Tables R–IV and R–V after

instrumenting innovation exposure and its interaction with county-level EHE using a second-

order polynomial in LOO EHE. Though the moderating effect estimates in Tables A-VII and

A-VIII are generally larger than those in Tables R–IV and R–V (respectively), the first-stage

F -statistics show that these different effect sizes are biased not only by the aforementioned

exclusion restriction violations, but also by weak instruments. The second-order polynomial

of LOO heat exposure is a relatively weak instrument for innovation exposure and its inter-

action with ExtremeExposurei,t; Kleibergen & Paap (2006) first-stage F -statistics in Tables

A-VII and A-VIII range from 0.135 to 7.583. This provides further evidence that LOO EHE

is an inappropriate proxy for innovation exposure, as LOO EHE is not a particularly strong

predictor of innovation exposure.

Despite the increased size of the moderating effect estimates, none of the estimates in
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Tables A-VII or A-VIII provide clear support for a mitigatory moderating impact of innova-

tion exposure on climate-driven land devaluation. The moderating effect estimates in Tables

A-VII and A-VIII are very noisy. The SEs of the standardized moderating effect estimates in

Panel C of Table A-VII (Table A-VIII) exceed those of the respective estimates in Panel C of

Table R–IV (Table R–V) by at least 277% (328%). Further, the moderating effect estimates

themselves are much smaller. Considering standardized coefficients, the moderating effect

estimates in Table A-VII (Table A-VIII) decrease by at least 62% (45%) compared to their

respective estimates in Table R–I. None of the moderating effect estimates in Tables A-VII

or A-VIII are statistically significantly different from zero.

5.3 Addressing Alternative Explanations

One could argue that these direct measures of innovation exposure are inappropriate for use in

models estimating Equation E1 because these direct measures are endogenously determined.

Indeed, MS23 find evidence that market innovations endogenously adapt to climate change.

However, there are reasons to doubt this relationship too, which I detail in Section 3.1.1.

That said, for the purposes of estimating the mitigatory impacts of innovation in a

model of the form in Equation E1, VarietyExposurei,t and PatentExposurei,t are per se less

endogenous measures of innovation exposure than LOO EHE. The reason why is intuitive.

To whatever extent LOO EHE reflects innovation exposure, the latent innovation exposure

captured by LOO EHE is subject to the same endogenous data-generating process as the

latent innovation exposure captured by direct measures of innovation. However, LOO heat

exposure reflects additional endogeneity arising from its strong relationships with both local

and national climate trends, as demonstrated in Sections 3.1.2 and 3.1.3. Replications of the

model in Equation E1 that replace LOO EHE with VarietyExposurei,t or PatentExposurei,t

thus provide less biased estimates of the mitigatory impacts of innovation on climate-driven

AL devaluation. Section 5.2 also reports instrumental variables (IV) specifications that ex-

ploit whatever exogenous variation LOO EHE induces in innovation, and the results from

these IV models do not qualitatively differ from the results arising from models that omit

the IV strategy.

Another potential concern with estimating the mitigatory impact of innovation using

24



direct measures of innovation is that these direct measures may imprecisely capture climate-

adaptive innovation, whose mitigatory impact on EHE-driven AL devaluation is the key

causal effect of interest. As aforementioned in Section 3.1.1, not all crop varieties and crop-

related patents are developed for the purpose of adapting to climate change. If a substantial

proportion of the crop varieties and patents in MS23’s data are unrelated to climate adapta-

tion, then it would be unsurprising for my replications to reveal negligible mitigatory impacts

of variety/patent exposure on EHE-driven AL devaluation.

This concern is partially allayed by MS23’s data. As aforementioned in Section 3.1.1,

MS23 already split patent counts into climate-related and climate-unrelated patents. My

patent exposure measure from Section 4 only makes use of data on climate-related patents,

which should in principle precisely capture climate-adaptive innovation. If this is not the

case, then this poses a problem for the quality of MS23’s data, and casts doubt on MS23’s

findings that EHE drives climate-adaptive innovation in Section IV.

This concern is also addressed by my IV strategy. Even if VarietyExposurei,t and/or

PatentExposurei,t imprecisely capture climate-adaptive innovation, IV models that instru-

ment these direct innovation measures with LOO EHE only exploit variation in variety/patent

exposure that can be directly traced back to exogenous climate shocks. Such variation should

arise (nearly) entirely from climate-adaptive innovation. However, these IV models in Section

5.2 yield qualitatively identical results to the reduced-form estimates from Section 5.1.

Additionally, one potential source of confounding that could be impacting my replication

results is the fact that both AL value and innovation both naturally grow considerably over

time. From the 1950s to the 2010s, the median county-level AL value in MS23’s data jumped

from 4.7 to 8.123 log points. Likewise, over the same timeframe, median county-level crop

variety exposure increased by over 673%, and median county-level patent exposure increased

by several orders of magnitude. This raises the possibility that my estimates from Sections

5.1 and 5.2 are effectively reflecting an increasing time trend that is common to both AL

value and innovation.

This concern is addressed by MS23’s fixed effects strategy, which I retain in all spec-

ifications from Sections 5.1 and 5.2. Like MS23’s Table III, my specifications incorporate

state-by-year fixed effects, which effectively control nonparametrically for temporal effects.
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Any linear or polynomial time trend term is perfectly multicollinear with these fixed effects.

Therefore, if there are differential time trends that could confound estimates of innovation’s

mitigatory impacts, then they are partialled out by these fixed effects.

Finally, one may worry that the bulk of the variation in my direct innovation measures

is driven by a handful of crops for whom innovation is particularly profitable. This issue

is related to the high concentration of innovation in a handful of crops that I discuss in

Section 3.1.1. If my results from Sections 5.1 and 5.2 are effectively just identifying the

most-innovated crops, then this may pose a ‘selection on returns’ issue – these crops may be

more innovated upon precisely because innovations on these crops are known to be better

at preserving the value of these crops.10

I address this concern empirically by repeating my analyses in Sections 5.1 using versions

of my direct innovation measures that exclude innovation from the most heavily-innovated

crops. Specifically, I construct alternative versions of VarietyExposurei,t and PatentExposurei,t

after omitting the top five crops by total number of crop varieties or climate-related patents

(respectively) in the 2010s. I replicate Tables R–IV and R–V, replacing VarietyExposurei,t

and PatentExposurei,t with these alternate measures, in Appendix Tables A-IX and A-X.

This check actually decreases my mitigatory impact estimates to the point that all miti-

gatory impact estimates in Appendix Table A-IX, and four of the five mitigatory impact

estimates in Appendix Table A-X, are negative. If taken at face value, these estimates would

imply that counties exposed to more innovation are more severely impacted by EHE than

counties exposed to less innovation. However, none of these mitigatory impact estimates are

statistically significantly different from zero.

In addition, this concern is also addressed by my IV strategy. The variation that produces

the IV estimates in Section 5.2 can be entirely tied back to the average innovation response

to EHE across the entire crop market, including crops for whom innovation may be less

successful at retaining crop value. This greatly mitigates the concern that the IV estimates

are driven by a handful of crops or by selection on returns. As aforementioned, the IV results

in Section 5.2 are not qualitatively different from the reduced-form results in Section 5.1.

10Note that such selection would imply that my mitigatory impact estimates are upward -biased, which
would be favorable for maintaining MS23’s original conclusions.
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6 Conclusion

This paper shows that MS23’s estimates of the mitigatory moderating impact of technological

market adaptations on EHE-induced AL devaluation are largely an artefact of an inappropri-

ate proxy for innovation exposure. Though full raw and analysis data are available, MS23’s

replication repository permits a partial computational reproduction of their published find-

ings. However, when I re-estimate MS23’s models using newly-constructed direct measures

of innovation, the mitigatory effect estimates I obtain are at least 99.8% less than those

obtained by MS23, and none are statistically significantly different from zero. These esti-

mates remain negligible in the face of a wide range of specifications and robustness checks.

Contrary to MS23’s key conclusions, my results suggest that technological market adapta-

tions have little capacity to mitigate the agricultural damage induced by climate change. My

conclusions align with those of several prior studies that estimate similar mitigatory effects

(e.g., see Hornbeck 2012; Aragón, Oteiza, & Rud 2021).

The findings in this paper cast doubt on more than just MS23’s main estimates of tech-

nological innovation’s moderating influence on EHE-induced AL devaluation. Principally,

MS23’s projections of aggregate historical and future climate change damage mitigation

from technological innovation depend on their estimates in Table III (see pgs. 685 and 690-

691). The fact that the moderating effect estimates that I obtain using direct measures of

innovation are at least 99.8% less than the estimates obtained using MS23’s proxy imply

that the projected mitigatory benefits of technological innovations likely decrease to similar

degrees. However, more importantly, my findings show that one should not put too much

faith in the capacity of technological market innovations to substantially mitigate the agri-

cultural harms of climate change. This last point is critically important for those seeking to

compute – or decide – optimal investment levels for abating climate change.

Author affiliation: Vrije Universiteit Amsterdam; School of Business and Economics;

Department of Ethics, Governance, and Society.
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Appendix

Replication Package Item Fully Partial No

Raw data provided X
Analysis data provided X

Cleaning code provided X
Analysis code provided X

Reproducible from raw data X
Reproducible from analysis data X

Note: This table summarizes the reproducibility of
MS23’s published findings based on the replication
repository in Moscona & Sastry (2022). The table fol-
lows the template employed in Brodeur et al. (2024).

Table A-I: Reproducibility of Published Findings from Replication Repository
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(1) (2) (3) (4)

County-level extreme exposure 1.145 1.166 0.462 0.486
(0.019) (0.02) (0.016) (0.017)
[0] [0] [0] [0]

County fixed effects X X
State × decade fixed effects X X
Weighted by agricultural land area X
Observations 21027 21027 21014 21014
R2 0.054 0.054 0.877 0.863

Note: Results arise from panel data regressions where county-level EHE
is the independent variable and county-level average mean temperature
is the dependent variable. Standard errors are presented in parenthe-
ses, and p-values (rounded to three decimal places) are displayed in
brackets.

Table A-II: Relationship Between Extreme Heat and Local Temperatures
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(1) (2)

∆ ExtremeExposure 0.002 0.007
(0.005) (0.005)
[0.752] [0.16]

All baseline controls X X
Climate-related patents X
Observations 64 64

Note: Replication of Table II in MS23
with alfalfa (and varieties thereof), bar-
ley, corn, soybeans, and tobacco removed.
Standard errors are given in parentheses,
while p-values are displayed in brackets.

Table A-III: Table II Replication, Top Five Crops Removed
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(1) (2) (3) (4) (5) (6)

∆ ExtremeExposure 0.011 0.012 0.011 0.015 0.02 0.029
(0.004) (0.004) (0.004) (0.008) (0.009) (0.008)
[0.008] [0.009] [0.013] [0.049] [0.027] [0]

1950-2016 sample period X X X X X
1980-2016 sample period X
Log area harvested X X X X X X
Preperiod climate controls X X X X X
Preperiod varieties X X X X
Cut-off temp. and cut-off temp sq. X X X
Average temperature change X
Observations 65 65 65 65 65 65

Note: Replication of MS23’s Table I with corn, lettuce and romaine, soybeans, and wheat
removed. Though tomatoes are also a ‘top five’ crop in varieties, they can not be removed
because they were never part of the sample for Table I; MS23 lack LD data on EHE for
tomatoes. Standard errors are displayed in parentheses, and p-values are given in brackets.

Table A-IV: Table I Replication, Top Five Crops Removed
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Linear Coefficient Elasticity Linear Coefficient Elasticity

LOO extreme heat exposure 0.994 1.002
(0.018) (0.023)

Leave-state-out extreme heat exposure 0.92 0.886
(0.019) (0.018)

Observations 21027 21027 21027 21027

Note: Results are based on simple random effects panel data regressions where county-level EHE is
the dependent variable. The elasticity estimate is obtained via the margins, eyex() post-estimation
command in Stata.

Table A-V: Relationships Between Extreme Heat Measures
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(1) (2) (3) (4) (5) (6) (7)

Panel A: Published Estimates
County-level extreme exposure -0.861 -1.55 -0.838 -0.872 -0.798 -0.232 -0.391

(0.211) (0.238) (0.203) (0.238) (0.226) (0.107) (0.132)
County-level extreme exposure × 0.259 0.445 0.247 0.261 0.24 0.0923 0.13
innovation exposure (0.0755) (0.0718) (0.0725) (0.0786) (0.0757) (0.0315) (0.032)
Observations 6000 6000 5990 6000 5990 20931 20931
R2 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Panel B: Replication Attempt
County-level extreme exposure -1.066 -1.574 -1.011 -1.103 -0.986 -0.264 -0.359

(0.208) (0.262) (0.203) (0.239) (0.225) (0.109) (0.129)
[0] [0] [0] [0] [0] [0.015] [0.006]

County-level extreme exposure × 0.181 0.389 0.154 0.173 0.148 0.0771 0.145
variety exposure (0.0765) (0.0793) (0.0668) (0.0743) (0.0684) (0.0356) (0.0371)

[0.02] [0] [0.024] [0.022] [0.033] [0.031] [0]
Observations 6000 6000 5990 6000 5990 20966 20966
A2 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Estimation type LD LD LD LD LD Panel Panel
Local EHE squared X X X X X X X
County fixed effects X X X X X X X
State × decade fixed effects X X X X X X X
Weighted by agricultural land area X X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X

Note: Panel A copies the results directly from Table A18 in MS23. Panel B is my best attempt to replicate
these published results. Standard errors double clustered at the county and state-by-decade levels are pre-
sented in parentheses, whereas p-values (rounded to three decimal places) are presented in brackets.

Table A-VI: MS23’s Table A18 and a Replication Attempt

33



(1) (2) (3) (4) (5) (6) (7)

Panel A: Raw coefficients
County-level extreme exposure 0.04751 -0.1973 -0.07448 -0.3257 0.12248 0.13951 -0.05239

(0.25192) (0.24639) (0.18544) (0.42494) (0.38848) (0.52994) (0.71966)
[0.8508] [0.42526] [0.68887] [0.4453] [0.75325] [0.79252] [0.94201]

County-level extreme exposure × 2e-05 3e-05 2e-05 0.00012 0.00014 -1e-05 -3e-05
variety exposure (4e-05) (6e-05) (6e-05) (8e-05) (0.00013) (0.00016) (0.00035)

[0.56738] [0.59335] [0.68934] [0.13748] [0.25311] [0.93673] [0.92555]

Panel B: Partial correlations
County-level extreme exposure 0.01935 -0.08244 -0.04124 -0.07888 0.03233 0.01438 -0.00398

(0.10256) (0.1019) (0.10242) (0.10196) (0.10249) (0.05462) (0.05463)
[0.85077] [0.42054] [0.68812] [0.44106] [0.75312] [0.79249] [0.94201]

County-level extreme exposure × 0.05878 0.05489 0.0411 0.15189 0.11716 -0.00434 -0.00511
variety exposure (0.10224) (0.10229) (0.10242) (0.10023) (0.10119) (0.05463) (0.05463)

[0.56672] [0.5928] [0.68909] [0.13298] [0.24985] [0.93673] [0.92555]

Panel C: Standardized coefficients
County-level extreme exposure 0.03334 -0.13843 -0.05221 -0.22851 0.08586 0.12731 -0.04781

(0.17674) (0.17287) (0.12999) (0.29814) (0.27233) (0.4836) (0.65673)
[0.8508] [0.42526] [0.68887] [0.4453] [0.75325] [0.79252] [0.94201]

County-level extreme exposure × 0.0354 0.0493 0.03534 0.17487 0.2082 -0.02007 -0.05085
variety exposure (0.06168) (0.09202) (0.08814) (0.11675) (0.18107) (0.25265) (0.54382)

[0.56738] [0.59335] [0.68934] [0.13748] [0.25311] [0.93673] [0.92556]

First-stage F 3.097 2.545 7.583 2.425 3.361 0.307 0.143
Estimation type LD LD LD LD LD Panel Panel
County fixed effects X X X X X X X
State × decade fixed effects X X X X X X X
Weighted by agricultural land area X X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X
Observations 6000 6000 5990 6000 5990 20966 20966

Note: The dependent variable in all models is logarithmic AL values. Estimates of the specification in Equation E1, where
LOO EHE is replaced with VarietyExposurei,t, and VarietyExposurei,t and (VarietyExposurei,t×ExtremeExposurei,t) are
instrumented by a second-order polynomial of LOO EHE, are presented alongside SEs double-clustered at the county and
state-year levels in parentheses, as well as p-values in brackets. F -statistics are computed in accordance with Kleibergen
& Paap (2006).

Table A-VII: Mitigatory Impacts of Variety Exposure, IV Estimates
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(1) (2) (3) (4) (5)

Panel A: Raw coefficients
County-level extreme exposure -0.083581 -0.113446 -0.124031 -0.184512 -0.093768

(0.276747) (1.075576) (0.22589) (0.284015) (0.33166)
[0.763303] [0.916222] [0.584243] [0.517481] [0.778005]

County-level extreme exposure × 1.6e-05 0.000133 1e-05 2.4e-05 2.4e-05
patent exposure (1.9e-05) (0.00033) (3.1e-05) (1.3e-05) (4e-05)

[0.409823] [0.6869] [0.741386] [0.074807] [0.539357]

Panel B: Partial correlations
County-level extreme exposure -0.031001 -0.010822 -0.056423 -0.066802 -0.029019

(0.102499) (0.102586) (0.102271) (0.10214) (0.102511)
[0.762972] [0.916207] [0.582447] [0.514676] [0.777732]

County-level extreme exposure × 0.084632 0.041445 0.033939 0.181745 0.063076
patent exposure (0.101863) (0.102422) (0.10248) (0.099209) (0.10219)

[0.408146] [0.686646] [0.741242] [0.070093] [0.53855]

Panel C: Standardized coefficients
County-level extreme exposure -0.05864 -0.079593 -0.086946 -0.129454 -0.065732

(0.194166) (0.754625) (0.158351) (0.199265) (0.232496)
[0.763304] [0.916222] [0.584243] [0.517481] [0.778006]

County-level extreme exposure × 0.069929 0.578733 0.044281 0.10482 0.106438
patent exposure (0.084469) (1.431441) (0.133785) (0.058187) (0.172784)

[0.409823] [0.6869] [0.741386] [0.074807] [0.539357]

First-stage F 6.465 0.135 5.304 5.597 2.311
Estimation type LD LD LD LD LD
County fixed effects X X X X X
State × decade fixed effects X X X X X
Weighted by agricultural land area X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X
Observations 6000 6000 5990 6000 5990

Note: The dependent variable in all models is logarithmic AL values. Estimates of the specifica-
tion in Equation E1, where LOO EHE is replaced with PatentExposurei,t, t ∈ {1950, 2010}, and

PatentExposurei,t and
(
PatentExposurei,t × ExtremeExposurei,t

)
are instrumented by a second-order

polynomial of LOO EHE, are presented alongside SEs double-clustered at the county and state-year
levels in parentheses, as well as p-values in brackets. F -statistics are computed in accordance with
Kleibergen & Paap (2006).

Table A-VIII: Mitigatory Impacts of Patent Exposure, IV Estimates
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(1) (2) (3) (4) (5) (6) (7)

Panel A: Raw coefficients
County-level extreme exposure -0.4012426 -0.5274014 -0.4386258 -0.3064452 -0.3102808 -0.0129256 -0.0776217

(0.1166121) (0.1562014) (0.1074939) (0.1313304) (0.1200561) (0.0705969) (0.1043509)
[0.0008634] [0.0010653] [9.36e-05] [0.0217366] [0.0112753] [0.854838] [0.4574868]

County-level extreme exposure × -1.1e-05 -1.8e-06 -8.8e-05 -1.6e-06 -8.96e-05 -2.12e-05 -1.06e-05
variety exposure (2.1e-05) (3.26e-05) (5.11e-05) (1.84e-05) (4.65e-05) (1.51e-05) (2.1e-05)

[0.6014858] [0.9554616] [0.0882405] [0.9300682] [0.0570108] [0.1605285] [0.6134907]

Panel B: Partial correlations
County-level extreme exposure -0.3773154 -0.3692783 -0.4609898 -0.246571 -0.2750046 -0.0100038 -0.0406746

(0.0879913) (0.0886069) (0.0807946) (0.0963602) (0.0948386) (0.0546304) (0.0545454)
[4.33e-05] [6.79e-05] [1e-07] [0.0120815] [0.0046396] [0.8548164] [0.4563705]

County-level extreme exposure × -0.0538411 -0.0057453 -0.1795464 -0.0090282 -0.2016499 -0.0770684 -0.0276328
variety exposure (0.1023004) (0.1025944) (0.0992904) (0.1025895) (0.0984259) (0.0543113) (0.0545941)

[0.5999039] [0.9554594] [0.0737244] [0.9300597] [0.0432449] [0.1568254] [0.6130843]

Panel C: Standardized coefficients
County-level extreme exposure -0.2815121 -0.3700252 -0.3074797 -0.2150022 -0.2175089 -0.0117953 -0.0708341

(0.0818151) (0.109591) (0.075354) (0.0921415) (0.0841602) (0.0644235) (0.0952259)
[0.0008634] [0.0010653] [9.36e-05] [0.0217366] [0.0112753] [0.854838] [0.4574867]

County-level extreme exposure × -0.0080186 -0.0013315 -0.0641776 -0.0011818 -0.0653999 -0.0181015 -0.0090688
variety exposure (0.015302) (0.023778) (0.0372593) (0.0134306) (0.0339447) (0.0128707) (0.0179378)

[0.6014857] [0.9554615] [0.0882405] [0.930068] [0.0570109] [0.1605287] [0.6134909]

Estimation type LD LD LD LD LD Panel Panel
County fixed effects X X X X X X X
State × decade fixed effects X X X X X X X
Weighted by agricultural land area X X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X
Observations 6000 6000 5990 6000 5990 20966 20966
R2 0.988 0.99 0.989 0.988 0.989 0.979 0.984

Note: The dependent variable in all models is logarithmic AL values. Estimates of the specification in Equation E1, where
InnovationExposurei,t is replaced with a variant of InnovationExposurei,t that omits corn, lettuce and romaine, soybeans, tomatoes,
and wheat are presented alongside SEs double-clustered at the county and state-year levels in parentheses, as well as p-values in brack-
ets.

Table A-IX: Mitigatory Impacts of Variety Exposure, No ‘Top Five’ Crops

36



(1) (2) (3) (4) (5)

Panel A: Raw coefficients
County-level extreme exposure -0.37902 -0.4298304 -0.3783317 -0.2111482 -0.2616331

(0.1141425) (0.142894) (0.1212683) (0.1189039) (0.1259963)
[0.0012755] [0.0033655] [0.0023966] [0.0789697] [0.0405466]

County-level extreme exposure × -7e-07 7.7e-06 -2e-06 -7e-07 -6.2e-06
patent exposure (3.9e-06) (8.5e-06) (4.3e-06) (3.8e-06) (4.6e-06)

[0.857124] [0.3669293] [0.637424] [0.8561642] [0.1794076]

Panel B: Partial correlations
County-level extreme exposure -0.3623624 -0.324456 -0.3378589 -0.1852934 -0.2180518

(0.0891261) (0.0917972) (0.0908864) (0.0990753) (0.0977197)
[9.87e-05] [0.0006332] [0.0003402] [0.0645311] [0.0280062]

County-level extreme exposure × -0.0185248 0.0926121 -0.0485678 -0.0186507 -0.1401252
patent exposure (0.1025626) (0.1017179) (0.1023558) (0.1025621) (0.1005833)

[0.8570513] [0.3648736] [0.6362326] [0.8560899] [0.166833]

Panel C: Standardized coefficients
County-level extreme exposure -0.2659207 -0.3015693 -0.2652131 -0.1481417 -0.1834065

(0.0800825) (0.1002546) (0.0850099) (0.083423) (0.0883243)
[0.0012755] [0.0033655] [0.0023966] [0.0789697] [0.0405468]

County-level extreme exposure × -0.0018477 0.0200921 -0.0052439 -0.0017755 -0.0160377
patent exposure (0.0102351) (0.0221628) (0.0110907) (0.0097686) (0.0118573)

[0.8571238] [0.3669295] [0.6374245] [0.856164] [0.1794078]

Estimation type LD LD LD LD LD
County fixed effects X X X X X
State × decade fixed effects X X X X X
Weighted by agricultural land area X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X
Observations 6000 6000 5990 6000 5990
R2 0.989 0.991 0.989 0.989 0.989

Note: The dependent variable in all models is logarithmic AL values. Estimates of the specification in
Equation E1, where InnovationExposurei,t is replaced with a variant of PatentExposurei,t that omits alfalfa
(and varieties thereof), barley, corn, soybeans, and tobacco are presented alongside SEs double-clustered at
the county and state-year levels in parentheses, as well as p-values in brackets.

Table A-X: Mitigatory Impacts of Patent Exposure, No ‘Top Five’ Crops
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Note: Average value of crops sold per acre of harvested cropland is displayed for each county in the continental
U.S. Data is based on the U.S. Department of Agriculture’s 2017 Census of Agriculture. Figure retrieved from
https://www.nass.usda.gov/Publications/AgCensus/2017/Online Resources/Ag Census Web Maps/index.php
on 12 August 2024. The water regions of the map are slightly modified to remove interactive elements of
the web figure; the land elements remain unchanged.

Figure A-I: Per-Acre Crop Value by County, 2017
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Note: Each county’s June 2018 deviation in average mean temperature from climatic aver-
ages from 1901-2000. Retrieved from https://www.ncei.noaa.gov/access/monitoring/monthly-
report/national/201806/supplemental/page-1 on 9 August 2024. Data is based on the National Oceanic and
Atmospheric Administration’s Monthly National Climate Report for June 2018.

Figure A-II: Average Mean Temperature Deviations from Climatic Averages by U.S. County
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Tables

(1) (2) (3) (4) (5) (6) (7)

Panel A: Published estimates
County-level extreme exposure -0.851 -1.519 -0.825 -0.862 -0.786 -0.232 -0.39

(0.211) (0.24) (0.203) (0.238) (0.226) (0.107) (0.132)
County-level extreme exposure × 0.249 0.425 0.237 0.251 0.23 0.0912 0.128
innovation exposure (0.0757) (0.0745) (0.0728) (0.0791) (0.0762) (0.0315) (0.0321)

Panel B: Reproductions
County-level extreme exposure -0.851 -1.519 -0.825 -0.862 -0.786 -0.232 -0.39

(0.211) (0.24) (0.203) (0.238) (0.226) (0.107) (0.132)
[0] [0] [0] [0] [0.001] [0.031] [0.003]

County-level extreme exposure × 0.249 0.425 0.237 0.251 0.23 0.0912 0.128
innovation exposure (0.0757) (0.0745) (0.0728) (0.0791) (0.0762) (0.0315) (0.0321)

[0.001] [0] [0.002] [0.002] [0.003] [0.004] [0]

Panel C: Partial correlations
County-level extreme exposure -0.454 -0.854 -0.459 -0.401 -0.382 -0.119 -0.163

(0.081) (0.028) (0.081) (0.086) (0.088) (0.054) (0.053)
[0] [0] [0] [0] [0] [0.028] [0.002]

County-level extreme exposure × 0.32 0.505 0.317 0.31 0.295 0.156 0.213
innovation exposure (0.092) (0.076) (0.092) (0.093) (0.094) (0.053) (0.052)

[0.001] [0] [0.001] [0.001] [0.002] [0.004] [0]

Panel D: Standardized coefficients
County-level extreme exposure -0.597 -1.066 -0.579 -0.605 -0.551 -0.212 -0.355

(0.148) (0.168) (0.142) (0.167) (0.158) (0.098) (0.121)
[0] [0] [0] [0] [0.001] [0.031] [0.003]

County-level extreme exposure × 0.603 1.028 0.572 0.607 0.554 0.274 0.387
innovation exposure (0.183) (0.18) (0.176) (0.191) (0.184) (0.095) (0.097)

[0.001] [0] [0.002] [0.002] [0.003] [0.004] [0]

Estimation type LD LD LD LD LD Panel Panel
County fixed effects X X X X X X X
State × decade fixed effects X X X X X X X
Weighted by agricultural land area X X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X
Observations (published) 6000 6000 5990 6000 5990 20931 20931
Observations (reproduction) 6000 6000 5990 6000 5990 20966 20966
R2 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Note: The dependent variable in all models is logarithmic AL values. Estimates of the specification in Equation
E1 are presented alongside SEs double-clustered at the county and state-year levels in parentheses, as well as
p-values in brackets. These values are not reported in Panel A, as they are not reported in the published estimates
in Table III.

Table R–I: Reproduction of Table III
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(1) (2) (3) (4) (5) (6) (7)

Panel A: Raw coefficients
County-level extreme exposure -0.898 -0.954 -0.866 -0.867 -0.761 -0.223 -0.169

(0.16) (0.243) (0.162) (0.19) (0.179) (0.09) (0.116)
[0] [0] [0] [0] [0] [0.013] [0.146]

(County-level extreme exposure)2 0.058 0.061 0.063 0.068 0.064 0.02 0.01
(0.018) (0.028) (0.016) (0.016) (0.016) (0.008) (0.01)
[0.002] [0.031] [0] [0] [0] [0.016] [0.33]

Panel B: Partial correlations
County-level extreme exposure -0.701 -0.441 -0.656 -0.529 -0.486 -0.137 -0.08

(0.052) (0.083) (0.058) (0.074) (0.078) (0.054) (0.054)
[0] [0] [0] [0] [0] [0.011] [0.142]

(County-level extreme exposure)2 0.316 0.219 0.37 0.396 0.372 0.131 0.053
(0.092) (0.098) (0.089) (0.087) (0.088) (0.054) (0.054)
[0.001] [0.027] [0] [0] [0] [0.015] [0.329]

Panel C: Standardized coefficients
County-level extreme exposure -0.63 -0.67 -0.607 -0.608 -0.533 -0.204 -0.154

(0.113) (0.17) (0.114) (0.133) (0.125) (0.082) (0.105)
[0] [0] [0] [0] [0] [0.013] [0.146]

(County-level extreme exposure)2 0.271 0.288 0.298 0.32 0.302 0.116 0.06
(0.083) (0.132) (0.077) (0.076) (0.077) (0.048) (0.061)
[0.002] [0.031] [0] [0] [0] [0.016] [0.33]

Estimation type LD LD LD LD LD Panel Panel
County fixed effects X X X X X X X
State × decade fixed effects X X X X X X X
Weighted by agricultural land area X X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X
Observations 6000 6000 5990 6000 5990 20966 20966
R2 0.988 0.99 0.989 0.989 0.989 0.979 0.984

Note: The dependent variable in all models is logarithmic AL values. Estimates of the specification
in Equation E6 are presented alongside SEs double-clustered at the county and state-decade levels in
parentheses, as well as p-values in brackets.

Table R–II: Fitting a Second-Order Polynomial in Extreme Heat Exposure
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(1) (2) (3) (4) (5) (6) (7)

Average moderating effect 0.139 0.376 0.114 0.118 0.103 0.15 0.221
(0.118) (0.138) (0.114) (0.123) (0.123) (0.044) (0.056)
[0.241] [0.007] [0.318] [0.34] [0.404] [0.001] [0]

Observations 6000 6000 5990 6000 5990 20966 20966
R2 0.989 0.991 0.989 0.989 0.989 0.979 0.984

Estimation type LD LD LD LD LD Panel Panel
County fixed effects X X X X X X X
State × decade fixed effects X X X X X X X
Weighted by agricultural land area X X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X

Note: Average moderating effects are calculated based on results from a model of the form in
Equation E8, running the formula in Equation E9 through Stata’s lincom command. Standard
errors double clustered at the county and state-decade level are shown in parentheses, whereas p-
values are presented in brackets.

Table R–III: Average Moderating Effects of LOO EHE on EHE-Induced AL Devaluation
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(1) (2) (3) (4) (5) (6) (7)

Panel A: Raw coefficients
County-level extreme exposure -0.3967733 -0.5056133 -0.4126515 -0.30271 -0.3169444 -0.0228589 -0.0885235

(0.1107134) (0.1332734) (0.1068332) (0.1212079) (0.1223538) (0.0663453) (0.0962329)
[0.0005366] [0.0002609] [0.0002049] [0.0142292] [0.0110957] [0.7306531] [0.3582927]

County-level extreme exposure × -3.5e-06 5.4e-06 -1.86e-05 -1e-06 -2.67e-05 -6.2e-06 9e-07
variety exposure (9.6e-06) (1.61e-05) (2.38e-05) (9.2e-06) (2.03e-05) (7.2e-06) (1.1e-05)

[0.7175476] [0.7372921] [0.4368398] [0.9092712] [0.1905351] [0.3957842] [0.9383229]

Panel B: Partial correlations
County-level extreme exposure -0.3953861 -0.4225602 -0.431632 -0.2650822 -0.2756833 -0.0188278 -0.0503225

(0.0865587) (0.0842783) (0.0834832) (0.0953884) (0.0948003) (0.0546165) (0.0544975)
[1.48e-05] [2.5e-06] [1.3e-06] [0.0065729] [0.0045277] [0.7305154] [0.356468]

County-level extreme exposure × -0.0372501 0.034496 -0.0803705 -0.0117239 -0.1365211 -0.0465052 0.0042307
variety exposure (0.1024555) (0.1024757) (0.1019351) (0.1025837) (0.1006856) (0.0545177) (0.0546349)

[0.7169847] [0.7371415] [0.4323979] [0.9092525] [0.1783406] [0.3942519] [0.9383224]

Panel C: Standardized coefficients
County-level extreme exposure -0.2783764 -0.3547386 -0.2892716 -0.2123816 -0.2221802 -0.02086 -0.0807825

(0.0776766) (0.0935047) (0.0748909) (0.0850395) (0.0857709) (0.0605437) (0.0878177)
[0.0005366] [0.0002609] [0.0002049] [0.0142292] [0.0110958] [0.730653] [0.3582926]

County-level extreme exposure × -0.005034 0.0078194 -0.0268635 -0.0015185 -0.0386643 -0.0094378 0.001311
variety exposure (0.0138748) (0.0232426) (0.0344035) (0.01329) (0.0293264) (0.0110998) (0.0169298)

[0.7175474] [0.7372923] [0.4368401] [0.9092709] [0.1905353] [0.3957844] [0.9383227]

Estimation type LD LD LD LD LD Panel Panel
County fixed effects X X X X X X X
State × decade fixed effects X X X X X X X
Weighted by agricultural land area X X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X
Observations 6000 6000 5990 6000 5990 20966 20966
R2 0.988 0.99 0.989 0.988 0.989 0.979 0.984

Note: The dependent variable in all models is logarithmic AL values. Estimates of the specification in Equation E1, where LOO EHE
is replaced with VarietyExposurei,t, are presented alongside SEs double-clustered at the county and state-year levels in parentheses, as
well as p-values in brackets.

Table R–IV: Mitigatory Impacts of Variety Exposure
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(1) (2) (3) (4) (5)

Panel A: Raw coefficients
County-level extreme exposure -0.4220814 -0.5217386 -0.4485648 -0.3207568 -0.3215077

(0.1113025) (0.1388546) (0.1133408) (0.119662) (0.1292944)
[0.0002624] [0.0002962] [0.000146] [0.0086664] [0.014641]

County-level extreme exposure × -2e-06 4e-07 -7.9e-06 -8e-07 -9.8e-06
patent exposure (2.7e-06) (4.6e-06) (8.5e-06) (2.5e-06) (7.5e-06)

[0.4723702] [0.9231358] [0.3545097] [0.7396941] [0.1916005]

Panel B: Partial correlations
County-level extreme exposure -0.4223497 -0.4177993 -0.4443255 -0.286046 -0.2638545

(0.0842965) (0.0846887) (0.0823424) (0.094203) (0.0954551)
[2.5e-06] [3.4e-06] [5e-07] [0.0030893] [0.0068548]

County-level extreme exposure × -0.0742286 0.0099249 -0.0958975 -0.0342088 -0.1361847
patent exposure (0.1020325) (0.1025877) (0.1016543) (0.1024778) (0.100695)

[0.4687091] [0.9231321] [0.3478854] [0.7392535] [0.179443]

Panel C: Standardized coefficients
County-level extreme exposure -0.2961326 -0.3660521 -0.314447 -0.2250432 -0.2253791

(0.0780899) (0.0974205) (0.0794527) (0.0839549) (0.0906363)
[0.0002624] [0.0002962] [0.000146] [0.0086664] [0.0146411]

County-level extreme exposure × -0.0086029 0.0019263 -0.0343705 -0.0036543 -0.0425796
patent exposure (0.0119236) (0.0199124) (0.0369407) (0.0109664) (0.0323744)

[0.47237] [0.9231359] [0.3545099] [0.7396939] [0.1916007]

Estimation type LD LD LD LD LD
County fixed effects X X X X X
State × decade fixed effects X X X X X
Weighted by agricultural land area X
Output prices and interactions X X
Avg. temp. (° C) and interactions X X
Observations 6000 6000 5990 6000 5990
R2 0.988 0.99 0.989 0.988 0.989

Note: The dependent variable in all models is logarithmic AL values. Estimates of the specification in
Equation E1, where LOO EHE is replaced with PatentExposurei,t and t ∈ {1950, 2010}, are presented
alongside SEs double-clustered at the county and state-year levels in parentheses, as well as p-values in
brackets.

Table R–V: Mitigatory Impacts of Patent Exposure
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Figures

Note: The left graph reproduces Figure VI from MS23, while the center and right graphs correct the hard-
coded quantiles used to construct the original graphs. Bars represent 90% and 95% confidence intervals.
Estimates are based on Table R–I, Panel B, Model 1.

Figure R-I: Reproduction and Corrections of MS23’s Figure VI
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Note: The graph shows a binscatter regression plot (see Cattaneo et al. 2024) showing the relationship
between logarithmic AL values and county-level EHE for ExtremeExposurei,t ∈ [0, 4]; this restriction, insti-
tuted to improve interpretability, covers 95.3% of the distribution of ExtremeExposurei,t. Confidence bands
and intervals are constructed with SEs clustered at the county level.

Figure R-II: Dynamics of Agricultural Land Value and Local Extreme Heat Exposure

48



Note: The graph shows binscatter regression plots (see Cattaneo et al. 2024) showing the relationships
between county-level EHE and both LOO EHE (left) and leave-state-out EHE (right). The ranges of both
LOO and leave-state-out EHEs are restricted to [0, 4] to improve interpretability; this range covers 98.8% and
98.5% of the distributions of LOO and leave-state-out EHEs (respectively). Confidence bands and intervals
are constructed with SEs clustered at the county level. A simple 45-degree line is appended to the graph for
reference.

Figure R-III: Relationship between County-Level and LOO Extreme Heat Exposure
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Note: The left graph reproduces the right graph from Figure R-I, while the center and right graphs display
extrapolated marginal impacts of county-level EHE on AL values for selected quantiles of different moder-
ators. The middle and right graphs are respectively constructed based on Model 1 estimates from Tables
R–IV and R–V, Panel B.

Figure R-IV: HTEs of Extreme Heat Exposure
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