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RDD’s ‘Experimental Appeal’

Source: Garicano, Lelarge, & van Reenen (2016)

The popularity of regression discontinuity
design RDD rests in part on its
experimental appeal

▶ In principle, when an agent’s running
variable (RV) crosses the assignment
cutoff, the agent should be effectively
randomized into or out of treatment
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RV Manipulation at the Cutoff

Source: Garicano, Lelarge, & van Reenen (2016)

Endogenous manipulation of running
variable (RV) values near the cutoff
induces selection biases

▶ Agents can often effectively select
into/out of treatment
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RV Manipulation Tests

RV manipulation tests estimate and assess discontinuities in the RV’s density at the cutoff

▶ Well-known versions include DCdensity and rddensity (McCrary 2008; Cattaneo, Jansson, &
Ma 2018; Cattaneo, Jansson, & Ma 2020)

▶ Per Web of Science, these tests have over 2100 citations between them
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... and How They’re Misused

Source: Huntington-Klein (2022)

Unfortunately, researchers (mis)interpret stat. insig.
manipulation as evidence of negligible manipulation

▶ This is a well-known fallacy (Altman & Bland
1995; Imai, King, & Stuart 2008; Wasserstein
& Lazar 2016)

Meaningful manipulation may go undetected if
these tests are underpowered
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An Alternative Testing Framework

Ideal: Stat. sig. evidence that RV manipulation ≈ 0. We can get this using equivalence testing:

1. Define the smallest practically/economically significant RV density discontinuities at the cutoff
for our given research setting

2. Use interval tests to assess whether the RV density discontinuity at the cutoff is bounded
beneath this effect size
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This Project

Novel equivalence testing procedure for RV manipulation tests

▶ Can provide sig. evidence that RV manipulation ≈ 0, which is what applied
researchers usually want to show

Empirical evidence of its necessity in applied RDD research

▶ Replicating 36 published RDD papers shows that > 44% of RV density
discontinuity magnitudes can’t be stat. sig. bounded beneath a 50% upward jump

Guidelines and statistical software commands for credible implementation

▶ lddtest command in Stata (available on SSC) and in the eqtesting R package
(available on CRAN)

▶ The R version comes with a cluster bootstrap procedure; first density discontinuity
estimator (to my knowledge) with cluster-robust inference
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Setup (1/2)

Standard cross-sectional RDD setup (panel setup possible via bootstrap)

▶ Agents i have some running variable Zi

▶ Agents are assigned to treatment if Zi crosses cutoff c :

Di =

{
1 if Zi ≥ c

0 if Zi < c
or Di =

{
1 if Zi ≤ c

0 if Zi > c

▶ Zi exhibits probability density function f (Zi )
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Setup (2/2)

We’ll test for RV manipulation by testing a continuity assumption: lim
Zi→c−

f (Zi ) = lim
Zi→c+

f (Zi )

▶ RV manipulation tests estimate density functions on each side of the cutoff, f̂−(Zi ) and f̂+(Zi )

▶ Our estimates of the LHS and RHS density limits are respectively f̂−(c) and f̂+(c)
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The Wrong Hypotheses: Standard NHST

Standard RV manipulation tests effectively assess the hypotheses

H0 : lim
Zi→c−

f (Zi ) = lim
Zi→c+

f (Zi )

HA : lim
Zi→c−

f (Zi ) ̸= lim
Zi→c+

f (Zi ).

There are many problems with this standard NHST approach

▶ No burden of proof: Researchers assume in the null hypotheses that what they want to
show is true

▶ For most researchers, imprecision is ‘good’

▶ Negligible manipulation can be ‘significant’ in high-powered research settings

Creates perverse incentives for ‘reverse p-hacking’ by setting restrictive bandwidths or not
reporting RV manipulation tests (see Dreber, Johanneson, & Yang 2024)
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The Right Hypotheses: Equivalence Testing

We’ll fix these problems by 1) flipping the hypotheses and 2) relaxing the constratins. As a
reminder, standard NHST hypotheses:

H0 : lim
Zi→c−

f (Zi ) = lim
Zi→c+

f (Zi )

HA : lim
Zi→c−

f (Zi ) ̸= lim
Zi→c+

f (Zi ).

And now equivalence testing hypotheses:

H0 : lim
Zi→c−

f (Zi ) ̸≈ lim
Zi→c+

f (Zi )

HA : lim
Zi→c−

f (Zi ) ≈ lim
Zi→c+

f (Zi ).

If we can set a range of values wherein the RV’s density jump at the cutoff ≈ 0, then we can
get stat sig. evidence for HA with a simple interval test
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Step 1: Set the Effect Size Threshold

Set largest practically/economically insignificant RTL density ratio ϵ > 1 for our research setting

▶ RTL density ratios are useful effect sizes because they are always comparable across datasets

▶ This threshold can be credibly set by surveying other researchers for their judgments Details
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Step 2: Estimate the Logarithmic Density Discontinuity

McCrary’s (2008) DCdensity procedure estimates logarithmic density
discontinuities:

θ̂ ≡ ln
(
f̂+(c)

)
− ln

(
f̂−(c)

)
= ln

(
f̂+(c)

f̂−(c)

)

McCrary (2008) also shows that θ̂ is consistent and asymptotically normal

▶ We can thus use θ̂ and SE
(
θ̂
)
from DCdensity for standard Gaussian inference

I also develop (cluster) bootstrap procedures for finite-sample (cluster-)robust inference

Vrije Universiteit Amsterdam and Tinbergen Institute Jack Fitzgerald 12/21



Intro Setup My Procedure Empirical Results Conclusion

Step 3: Equivalence Testing

We’ll test whether θ̂ is stat. sig. bounded between − ln(ϵ) and ln(ϵ) w/ two one-sided tests of the form

H0 : θ < − ln(ϵ)

HA : θ ≥ − ln(ϵ)

H0 : θ > ln(ϵ)

HA : θ ≤ ln(ϵ)

If both tests are stat. sig. at level α, then there’s size-α stat. sig. evidence that RV manipulation at the
cutoff is practically equal to zero (see Schuirmann 1987; Berger & Hsu 1996) Visualization
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Equivalence Confidence Interval (ECI) Approach

θ̂’s (1− α) equivalence confidence interval (ECI) is just its (1− 2α) CI

▶ If θ̂’s (1− α) ECI is entirely bounded in [− ln(ϵ), ln(ϵ)], then we have size-α evidence under the
TOST procedure that RV manipulation at the cutoff ≈ 0 (Berger & Hsu 1996)

We can use this for (percentile) bootstrap inference by constructing (1− α) bootstrap ECIs
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Replication Data

I leverage replication data from Stommes, Aronow, & Sävje (2023), who run robustness
checks on 36 published RDD papers in AJPS, APSR, and JOP from 2009-2018

▶ Some papers use multiple datasets; I run RV manipulation tests in each dataset
(45 in total)

Designs in this dataset include close election designs, spatial discontinuities, and age
discontinuities

▶ Historically popular RVs in economics research (Lee & Lemieux 2010)
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Equivalence Testing Performance

I re-examine these papers with my equivalence-based RV manipulation test, using a
lenient threshold of ϵ = 1.5 Why?

▶ I.e., each test asks: Can we significantly bound RV manipulation at the cutoff
beneath a 50% upward jump/33.3% downward jump?

▶ Given the caliber of journals, these RVs should ‘pass’ this lenient equivalence test

I then compute equivalence testing failure rates – the proportion of these
equivalence tests that are not significant at a 5% level
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Main Equivalence Testing Failure Rate Estimates

Failure rates for my equivalence-based RV
manipulation test range from 44-75%

▶ Interpretation: Over 44% of RV
density discontinuity magnitudes at
the cutoff can’t be significantly
bounded beneath a 50% upward jump
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Failure Curves

To obtain ‘equivalence testing failure rates’ beneath 5%, we’d have to be willing to argue that a 350%
upward density jump is practically equal to zero

▶ Takeaway: Meaningful RV manipulation at the cutoff is still a serious problem in RDD research
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Confusion Curves

17.7% of LDD estimates at cutoff are false positives: Stat. sig., but sig. bounded within ϵ ∈ [2/3, 3/2]

▶ Likewise, 26.6% of LDD estimates at the cutoff are false negatives: Not stat. sig., but not sig.
bounded within ϵ ∈ [2/3, 3/2]

Takeaway: Standard NHST often misclassifies the practical significance of RV manipulation at cutoff
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Practical Considerations

How do you set the threshold ϵ?

▶ If we set it ourselves, we’ll likely get (reasonable) accusations of p-hacking

▶ But if others set it for us, the threshold is credibly independent of our data

I recommend setting ϵ by surveying other researchers for their judgments of the smallest
practically/economically significant RV density jump at the cutoff

▶ Practical using online resources such as the Social Science Prediction Platform (DellaVigna,
Pope, & Vivalt 2019)

▶ Data from these researcher surveys can be useful for reasons beyond this test

An alternative is partial identification robust to RV manipulation (Gerard, Rokkanen, & Rothe 2020)

▶ Takeaway: If you’re going to decide whether RV manipulation is meaningful using a test, then
use an equivalence test

Equivalence testing is likely useful for many econometric specification tests! Step 1
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Thank You For Your Attention!

These Slides

I am on the job market in 2025-2026!

Website: https://jack-fitzgerald.github.io
Email: j.f.fitzgerald@vu.nl
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Two One-Sided Tests (TOST) Procedure

In other words, we have stat. sig. evidence at the 5% level that θ ≈ 0 if

1. θ̂ is 1.645 SEs above − ln(ϵ), and

2. θ̂ is 1.645 SEs below ln(ϵ)

Step 3
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Why ϵ = 1.5?

▶ Chen, Cohen, & Chen (2010) show that an odds ratio of 1.5 corresponds closely
w/ a Cohen’s (1988) d = 0.2, the classic small effect size benchmark

▶ Same effect size proposed by Hartman (2021)

▶ Practically large in many research-relevant RDD settings (e.g., elections)

Back
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