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1 Introduction

Rains & Richards (2024c) find that US states that mandated COVID-19 vaccination now have

lower uptake of COVID-19 booster shots and both adult and child flu vaccines than states

that banned local COVID-19 vaccination mandates. Rains & Richards (2024c) interpret

these differences as causal effects of vaccine mandates. Fitzgerald (2024) replicates Rains &

Richards (2024c) and shows that these findings are driven by the inclusion of a single bad

control variable. Rains & Richards’ (2024c) models on COVID-19 booster/flu vaccine uptake

all control for contemporaneous COVID-19 vaccination rates, which are likely affected by

both COVID-19 vaccination mandates and by unobserved factors that also impact COVID-

19 booster/flu vaccine uptake, such as vaccine hesitancy (see Cohn et al. 2022; Karaivanov et

al. 2022; Mills & Ruttenauer 2022). Controlling for contemporaneous COVID-19 vaccination

rates thus likely induces collider bias in Rains & Richards’ (2024c) estimates on COVID-19

vaccination mandates (Cinelli, Forney, & Pearl 2024). Fitzgerald (2024) shows that removing

COVID-19 vaccination rates from Rains & Richards’ (2024c) models sign-flips the paper’s

headline results on COVID-19 booster/flu vaccine uptake. I.e., though Rains & Richards

(2024c) find that states that mandated COVID-19 vaccination have significantly less COVID-

19 booster/flu vaccine uptake, Fitzgerald (2024c) shows that after removing the bad control

from the model, states that mandated COVID-19 vaccination see significantly more COVID-

19 booster/flu vaccine uptake.

Rains & Richards (2024a) respond to Fitzgerald (2024) by reporting new estimates from
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models where they continue to control for contemporaneous COVID-19 vaccination rates,

but add new variables controlling for baseline measures of mandate/vaccine acceptance. Per

Rains & Richards (2024a), there are two new sets of control variables. The first variable

is state-level attitudes towards requiring vaccinations for all individuals in January 2021,

as measured by the COVID States Project (Lin et al. 2023). The second set of variables

is state-level flu vaccination rates for healthy adults aged 18-64, as well as for children,

from 2018-2019, per data from the US Centers for Disease Control and Prevention (CDC

2024). These new models appear to broadly support Rains & Richards’ (2024c) original

conclusions. The new estimates on the difference between mandate states and states that

banned mandates are all negative, as in the original paper, with nearly all of these new

estimates being statistically significantly different from zero.

This note demonstrates problems with the empirical analyses in Rains & Richards (2024a).

I show that the new control strategy applied in Rains & Richards (2024a) still potentially

exposes their estimates of interest to collider bias because these models still control for

contemporaneous COVID-19 vaccination rates. Further, with the new baseline vaccination

and attitudes data that Rains & Richards (2024a) collect, it is now unnecessary to incur

risks of collider bias, as one can control for baseline vaccine attitudes without controlling for

contemporaneous COVID-19 vaccination rates. I thus run a robustness check that removes

COVID-19 vaccination rates from Rains & Richards’ (2024a) new models. As in my original

replication, this robustness check sign-flips every estimate of interest in Rains & Richards

(2024a). I.e., even when controlling for baseline vaccine attitudes/uptake, states that man-

dated COVID-19 vaccination see higher, not lower, uptake of COVID-19 boosters and flu

vaccines. The results in Rains & Richards (2024a) are thus likely driven by collider bias aris-

ing from unnecessarily controlling for contemporaneous COVID-19 vaccination rates. The

replication repository for this analysis can be found at https://osf.io/9cn38/.

2 Risk of Collider Bias

Rains & Richards (2024a) argue that their new controls can eliminate the collider bias that

I highlight in my original replication. Fitzgerald (2024) points to vaccine hesitancy as an un-
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observed factor that impacts both COVID-19 vaccination rates and COVID-19 booster/flu

vaccine uptake. The existence of such a factor implies that controlling for contemporaneous

COVID-19 vaccination rates will induce collider bias because COVID-19 vaccination man-

dates impact COVID-19 vaccination rates (Cohn et al. 2022; Karaivanov et al. 2022; Mills

& Ruttenauer 2022; Cinelli, Forney & Pearl 2024). Rains & Richards (2024a) argue that

additionally controlling for baseline vaccination rates eliminates potential collider bias aris-

ing from vaccine hesitancy’s joint impact on COVID-19 vaccination rates and COVID-19

booster/flu vaccine uptake. Appendix Figure A1 replicates Figure 1 in Rains & Richards

(2024a) and shows that this claim is true: adding measures of baseline vaccine hesitancy

does close collider paths arising from vaccine hesitancy.

However, it is an odd choice to continue controlling for contemporaneous COVID-19 vacci-

nation rates when Rains & Richards (2024a) now have baseline measures of mandate/vaccine

acceptance. Rains & Richards (2024a, 2024c) justify controlling for COVID-19 vaccination

rates because they capture revealed attitudes about vaccination and mandates. From Rains

& Richards (2024a):

“We included COVID-19 vaccination rates for theoretical reasons. As previously

discussed in our manuscript and supporting information, research on psychologi-

cal reactance theory indicates that the efficacy of government mandates depends

on people’s preexisting feelings about the restricted behavior.”

However, in Rains & Richards (2024a), this goal of controlling for “preexisting feelings about

the restricted behavior” is now already achieved by controlling for baseline flu vaccine uptake

and mandate attitudes. It is no longer necessary to control for COVID-19 vaccination rates to

capture these attitudes. The models in Rains & Richards (2024a) could in principle achieve

the same level of control over these baseline attitudes by omitting controls for COVID-19

vaccination rates, which would minimize the risk of collider bias.

Continuing to control for contemporaneous COVID-19 vaccination rates still likely in-

duces collider bias in Rains & Richards’ (2024a) new models. In order to rule out all collider

bias induced by controlling for contemporaneous COVID-19 vaccination rates, collider paths

from all unobserved factors that simultaneously affect COVID-19 vaccination rates and
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COVID-19 booster/flu vaccine uptake must be closed. Appendix Figure A2 shows that even

if controlling for baseline vaccine/mandate acceptance closes collider paths that run through

vaccine hesitancy, if there is any other unobserved collider whose path is not closed by an

observed control variable, then there will still be a collider path that biases estimates of

the relationship between vaccine mandates and COVID-19 booster/flu vaccine uptake. For

example, healthcare access simultaneously affects COVID-19 vaccination rates and COVID-

19 booster/flu vaccine uptake, and its collider path is not blocked by any observed control

variable. Many similar unobserved factors likely exist.

3 Replication

To assess the robustness of the new findings to potential collider bias, I replicate the results

in Rains & Richards (2024a) and conduct a robustness check where I remove controls for

contemporaneous COVID-19 vaccination rates. Unfortunately, Rains & Richards (2024a) do

not provide a replication repository for the results in their reply. I thus combine the data

from the replication repository for the original paper (Rains & Richards 2024b) with the

new data sources cited in the reply (Lin et al. 2023; CDC 2024).

Examining the newer data sources reveals ambiguities in Rains & Richards’ (2024a) vari-

able descriptions that make reproducibility challenging without a replication repository. In

particular, Rains & Richards (2024a) report obtaining “flu vaccination rates for healthy

adults ages 18 to 64 during the 2018-2019 flu season from the US CDC, and child flu vac-

cination rates during 2018 to 2019 from the CDC.” Several ambiguities become clear when

comparing these variable descriptions to the CDC data.

1. Timing: The CDC (2024) data is stored monthly, not seasonally or annually, so the

CDC (2024) data does not report just one ‘2018-2019’ flu vaccination rate for any

state. This implies either that a given state’s monthly baseline flu vaccination rates

are aggregated into one seasonal rate or that this state’s individual monthly baseline

vaccination rates take on different values that are somehow matched to that state’s

endline vaccination rates. The aggregation/matching process that Rains & Richards

(2024a) employ is unclear.
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2. Missing values: Several states are missing at least some vaccination rates in some or

all months during the 2018-2019 flu season. It is unclear how these missing values are

handled when aggregating or matching baseline vaccination rates to endline COVID-19

booster/flu vaccination rates.

3. Vaccination types: The CDC reports vaccination rates against the H1N1 swine flu,

against the seasonal flu, or against either. It is unclear which of these latter two vaccine

rates Rains & Richards (2024a) are collecting.

For my replication, I aggregate state i’s vaccination rates by taking a simple mean of all

available monthly vaccination rates against the seasonal flu for state i during the 2018-2019

flu season, ignoring missing values. I obtain these values both for non-high-risk adults aged

18-64 and for children aged six months to 17 years.

Appendix Table A1 shows the results of my best attempt to reproduce the findings

in Rains & Richards (2024a). I cannot exactly reproduce the results in Rains & Richards

(2024a). However, the conclusions arising from all coefficients on the ‘mandate state’ dummy

in my reproduction attempt are nearly identical to those arising from the published estimates

in Rains & Richards (2024a). This suggests that I have largely recovered the data collection

and analytical strategies employed in Rains & Richards (2024a).

Table 1 compares the results of my reproduction to identical models that remove controls

for contemporaneous COVID-19 vaccination rates; this robustness check sign-flips every es-

timate of interest in Rains & Richards (2024a). As in their original paper, when Rains &

Richards (2024a) control for contemporaneous COVID-19 vaccination rates, states that man-

dated COVID-19 vaccination rates appear to have significantly lower uptake of COVID-19

boosters and flu vaccines than states which banned local COVID-19 vaccination mandates.

However, after eliminating the risk of collider bias by removing contemporaneous COVID-19

vaccination rates from Rains & Richards’ (2024a) models, mandate states have significantly

higher uptake of COVID-19 boosters and flu vaccines, even after controlling for baseline

mandate attitudes and baseline vaccination rates.

This check provides even stronger evidence that Rains & Richards’ (2024a; 2024c) re-

sults are driven by collider bias than my original replication (Fitzgerald 2024). Removing
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COVID-19 booster Adult flu vaccine Child flu vaccine COVID-19 booster Adult flu vaccine Child flu vaccine
uptake uptake uptake uptake uptake uptake

Panel A
Mandate state -0.075 -0.121 -0.183 0.046 0.06 0.08

(0.028) (0.021) (0.029) (0.021) (0.016) (0.022)
Baseline mandate -0.001 -0.001 -0.001 0 0.001 0.001
attitudes (0.002) (0.001) (0.002) (0.001) (0.001) (0.002)
COVID-19 3.686 1.522 2.194
vaccination rate (0.056) (0.071) (0.029)
N 1025 205 1025 1025 205 1025

Panel B
Mandate state -0.07 -0.12 -0.182 0.045 0.058 0.063

(0.029) (0.022) (0.03) (0.022) (0.017) (0.021)
Baseline adult flu 0 0 0.003 0.001 0.001 0.008
vaccination rate (0.004) (0.003) (0.004) (0.003) (0.002) (0.003)
COVID-19 3.675 1.545 2.182
vaccination rate (0.057) (0.071) (0.03)
N 1000 200 1000 1000 200 1000

Panel C
Mandate state -0.063 -0.117 -0.175 0.046 0.059 0.055

(0.03) (0.021) (0.03) (0.023) (0.016) (0.02)
Baseline child flu -0.002 -0.002 -0.001 0 -0.001 0.007
vaccination rate (0.003) (0.002) (0.003) (0.002) (0.002) (0.002)
COVID-19 3.686 1.52 2.194
vaccination rate (0.056) (0.07) (0.029)
N 1025 205 1025 1025 205 1025

Note: Standard errors are reported in parentheses.

Table 1: Results With and Without Controls for COVID-19 Vaccination Rates

contemporaneous COVID-19 vaccination rates from Rains & Richards’ (2024c) original mod-

els creates a bias tradeoff. On one hand, removing contemporaneous COVID-19 vaccination

rates as a control minimizes the risk of collider bias. On the other hand, this check also

risks introducing some bias by potentially re-opening backdoor paths from unobserved vac-

cine hesitancy and/or mandate attitudes. However, the robustness checks in this paper now

control for measures of this baseline acceptance, which in principle should close those back-

door paths. This provides strong evidence that the differences between my estimates and

those in Rains & Richards (2024a; 2024c) arise because their models are exposed to a unique

collider bias. This implies that the results in both Rains & Richards (2024a) and Rains &

Richards (2024c) are primarily driven by collider bias arising from adjustments for a bad

control variable.
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Appendix

COVID-19 booster COVID-19 booster Adult flu vaccine Adult flu vaccine Child flu vaccine Child flu vaccine
uptake uptake uptake uptake uptake uptake

Panel A
Mandate state -0.1 -0.07 -0.07 -0.12 -0.11 -0.18

(p = 0.001) (p = 0.011) (p = 0.002) (p < 0.001) (p = 0.001) (p < 0.001)
COVID-19 3.87 3.69 1.54 1.52 2.2 2.19
vaccination rate (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)
Baseline mandate 0.2 0 -0.62 0 -0.74 0
attitudes (p = 0.001) (p = 0.67) (p < 0.001) (p = 0.686) (p < 0.001) (p = 0.537)

Panel B
Mandate state -0.07 -0.07 -0.12 -0.12 -0.19 -0.18

(p = 0.012) (p = 0.02) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)
COVID-19 3.67 3.67 1.48 1.55 2.18 2.18
vaccination rate (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)
Baseline adult flu 0 0 0 0 0 0
vaccination rate (p = 0.697) (p = 0.991) (p = 0.023) (p = 0.875) (p = 0.154) (p = 0.5)

Panel C
Mandate state -0.05 -0.06 -0.12 -0.12 -0.19 -0.17

(p = 0.122) (p = 0.038) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)
COVID-19 3.68 3.69 1.51 1.52 2.18 2.19
vaccination rate (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001) (p < 0.001)
Baseline child flu 0 0 0 0 0 0
vaccination rate (p = 0.163) (p = 0.437) (p = 0.692) (p = 0.387) (p = 0.479) (p = 0.627)

Published estimates X X X
Reproduction X X X

Note: Raw p-values are reported in parentheses.

Table A1: Published Estimates vs. Reproduction of Table 1 in Rains & Richards’ Reply
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Note: Directed acyclic graph showing relationships between variables in the models from Rains & Richards
(2024a). COVID-19 vaccine mandates are the exposure of interest, and COVID-19 booster and flu vaccine
uptake are the outcomes of interest. White circles denote observed variables controlled for in Rains & Richards
(2024a), and grey circles denote unobserved factors not controlled for in Rains & Richards (2024a). Graph
made using https://www.dagitty.net/dags.html.

Figure A1: Directed Acyclic Graph With Only Vaccine Hesitancy as a Potential Confounder
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Note: Directed acyclic graph showing relationships between variables in the models from Rains & Richards
(2024a). COVID-19 vaccine mandates are the exposure of interest, and COVID-19 booster and flu vaccine
uptake are the outcomes of interest. White circles denote observed variables controlled for in Rains &
Richards (2024a), and grey circles denote unobserved factors not controlled for in Rains & Richards (2024a).
Red arrows show biasing paths. Graph made using https://www.dagitty.net/dags.html.

Figure A2: Directed Acyclic Graph With Other Potential Confounders
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